Matches in SemOpenAlex for { <https://semopenalex.org/work/W2552144562> ?p ?o ?g. }
- W2552144562 abstract "Automatic emotion recognition is an interdisciplinary research field which deals with the algorithmic detection of human affect, e.g. anger or sadness, from a variety of sources, such as speech or facial gestures. Apart from the obvious usage for industry applications in human-robot interaction, acquiring the emotional state of a person automatically also is of great potential for the health domain, especially in psychology and psychiatry. Here, evaluation of human emotion is often done using oral feedback or questionnaires during doctor-patient sessions. However, this can be perceived as intrusive by the patient. Furthermore, the evaluation can only be done in a noncontinuous manner, e.g. once a week during therapy sessions. In contrast, using automatic emotion detection, the affect state of a person can be evaluated in a continuous non-intrusive manner, for example to detect early on-sets of depression. An additional benefit of automatic emotion recognition is the objectivity of such an approach, which is not influenced by the perception of the patient and the doctor. To reach the goal of objectivity, it is important, that the source of the emotion is not easily manipulable, e.g. as in the speech modality. To circumvent this caveat, novel approaches in emotion detection research the potential of using physiological measures, such as galvanic skin sensors or pulse meters. In this paper we outline a way of detecting emotion from brain waves, i.e., EEG data. While EEG allows for a continuous, real-time automatic emotion recognition, it furthermore has the charm of measuring the affect close to the point of emergence: the brain. Using EEG data for emotion detection is nevertheless a challenging task: Which features, EEG channel locations and frequency bands are best suited for is an issue of ongoing research. In this paper we evaluate the use of state of the art feature extraction, feature selection and classification algorithms for EEG emotion classification using data from the de facto standard dataset, DEAP. Moreover, we present results that help choose methods to enhance classification performance while simultaneously reducing computational complexity." @default.
- W2552144562 created "2016-11-30" @default.
- W2552144562 creator A5004191382 @default.
- W2552144562 creator A5006648338 @default.
- W2552144562 creator A5028870185 @default.
- W2552144562 creator A5029237159 @default.
- W2552144562 creator A5078646305 @default.
- W2552144562 date "2016-09-01" @default.
- W2552144562 modified "2023-10-01" @default.
- W2552144562 title "EEG-based automatic emotion recognition: Feature extraction, selection and classification methods" @default.
- W2552144562 cites W1520790182 @default.
- W2552144562 cites W2002055708 @default.
- W2552144562 cites W2035083235 @default.
- W2552144562 cites W2045468728 @default.
- W2552144562 cites W2067583143 @default.
- W2552144562 cites W2081420711 @default.
- W2552144562 cites W2091322931 @default.
- W2552144562 cites W2114872534 @default.
- W2552144562 cites W2132889650 @default.
- W2552144562 cites W2153635508 @default.
- W2552144562 cites W2154053567 @default.
- W2552144562 cites W2162137602 @default.
- W2552144562 cites W2167557160 @default.
- W2552144562 cites W2170883741 @default.
- W2552144562 cites W4236173595 @default.
- W2552144562 doi "https://doi.org/10.1109/healthcom.2016.7749447" @default.
- W2552144562 hasPublicationYear "2016" @default.
- W2552144562 type Work @default.
- W2552144562 sameAs 2552144562 @default.
- W2552144562 citedByCount "64" @default.
- W2552144562 countsByYear W25521445622017 @default.
- W2552144562 countsByYear W25521445622018 @default.
- W2552144562 countsByYear W25521445622019 @default.
- W2552144562 countsByYear W25521445622020 @default.
- W2552144562 countsByYear W25521445622021 @default.
- W2552144562 countsByYear W25521445622022 @default.
- W2552144562 countsByYear W25521445622023 @default.
- W2552144562 crossrefType "proceedings-article" @default.
- W2552144562 hasAuthorship W2552144562A5004191382 @default.
- W2552144562 hasAuthorship W2552144562A5006648338 @default.
- W2552144562 hasAuthorship W2552144562A5028870185 @default.
- W2552144562 hasAuthorship W2552144562A5029237159 @default.
- W2552144562 hasAuthorship W2552144562A5078646305 @default.
- W2552144562 hasConcept C111472728 @default.
- W2552144562 hasConcept C118552586 @default.
- W2552144562 hasConcept C138885662 @default.
- W2552144562 hasConcept C154945302 @default.
- W2552144562 hasConcept C15744967 @default.
- W2552144562 hasConcept C169760540 @default.
- W2552144562 hasConcept C180747234 @default.
- W2552144562 hasConcept C195704467 @default.
- W2552144562 hasConcept C206310091 @default.
- W2552144562 hasConcept C207347870 @default.
- W2552144562 hasConcept C2482559 @default.
- W2552144562 hasConcept C26760741 @default.
- W2552144562 hasConcept C2776141551 @default.
- W2552144562 hasConcept C2777438025 @default.
- W2552144562 hasConcept C2779302386 @default.
- W2552144562 hasConcept C2779812673 @default.
- W2552144562 hasConcept C28490314 @default.
- W2552144562 hasConcept C41008148 @default.
- W2552144562 hasConcept C522805319 @default.
- W2552144562 hasConcept C52622490 @default.
- W2552144562 hasConcept C6438553 @default.
- W2552144562 hasConcept C77805123 @default.
- W2552144562 hasConceptScore W2552144562C111472728 @default.
- W2552144562 hasConceptScore W2552144562C118552586 @default.
- W2552144562 hasConceptScore W2552144562C138885662 @default.
- W2552144562 hasConceptScore W2552144562C154945302 @default.
- W2552144562 hasConceptScore W2552144562C15744967 @default.
- W2552144562 hasConceptScore W2552144562C169760540 @default.
- W2552144562 hasConceptScore W2552144562C180747234 @default.
- W2552144562 hasConceptScore W2552144562C195704467 @default.
- W2552144562 hasConceptScore W2552144562C206310091 @default.
- W2552144562 hasConceptScore W2552144562C207347870 @default.
- W2552144562 hasConceptScore W2552144562C2482559 @default.
- W2552144562 hasConceptScore W2552144562C26760741 @default.
- W2552144562 hasConceptScore W2552144562C2776141551 @default.
- W2552144562 hasConceptScore W2552144562C2777438025 @default.
- W2552144562 hasConceptScore W2552144562C2779302386 @default.
- W2552144562 hasConceptScore W2552144562C2779812673 @default.
- W2552144562 hasConceptScore W2552144562C28490314 @default.
- W2552144562 hasConceptScore W2552144562C41008148 @default.
- W2552144562 hasConceptScore W2552144562C522805319 @default.
- W2552144562 hasConceptScore W2552144562C52622490 @default.
- W2552144562 hasConceptScore W2552144562C6438553 @default.
- W2552144562 hasConceptScore W2552144562C77805123 @default.
- W2552144562 hasLocation W25521445621 @default.
- W2552144562 hasOpenAccess W2552144562 @default.
- W2552144562 hasPrimaryLocation W25521445621 @default.
- W2552144562 hasRelatedWork W1979551172 @default.
- W2552144562 hasRelatedWork W2028755160 @default.
- W2552144562 hasRelatedWork W2080454040 @default.
- W2552144562 hasRelatedWork W2129256116 @default.
- W2552144562 hasRelatedWork W2561517588 @default.
- W2552144562 hasRelatedWork W2601816878 @default.
- W2552144562 hasRelatedWork W2991958478 @default.
- W2552144562 hasRelatedWork W3156669407 @default.
- W2552144562 hasRelatedWork W3169597903 @default.
- W2552144562 hasRelatedWork W4292794032 @default.