Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223583259> ?p ?o ?g. }
- W4223583259 endingPage "178" @default.
- W4223583259 startingPage "172" @default.
- W4223583259 abstract "In medical and material science, 3D reconstruction is of great importance for quantitative analysis of microstructures. After the image segmentation process of serial slices, in order to reconstruct each local structure in volume data, it needs to use precise object tracking algorithm to recognize the same object region in adjacent slice. Suffering from weak representative hand-crafted features, traditional object tracking methods always draw out under-segmentation results. In this work, we have proposed an adjacent similarity based deep learning tracking method (ASDLTrack) to reconstruct 3D microstructure. By transferring object tracking problem to classification problem, it can utilize powerful representative ability of convolutional neural network in pattern recognition. Experiments in three datasets with three metrics demonstrate that our algorithm achieves the promising performance compared to traditional methods." @default.
- W4223583259 created "2022-04-15" @default.
- W4223583259 creator A5009624071 @default.
- W4223583259 creator A5023139838 @default.
- W4223583259 creator A5050322657 @default.
- W4223583259 creator A5072071140 @default.
- W4223583259 creator A5077201708 @default.
- W4223583259 creator A5079572594 @default.
- W4223583259 creator A5080102032 @default.
- W4223583259 date "2022-08-01" @default.
- W4223583259 modified "2023-09-29" @default.
- W4223583259 title "Deep learning based object tracking for 3D microstructure reconstruction" @default.
- W4223583259 cites W1898703532 @default.
- W4223583259 cites W1901129140 @default.
- W4223583259 cites W1903029394 @default.
- W4223583259 cites W1972130107 @default.
- W4223583259 cites W1987403094 @default.
- W4223583259 cites W2015159529 @default.
- W4223583259 cites W2033403400 @default.
- W4223583259 cites W2080858319 @default.
- W4223583259 cites W2085524591 @default.
- W4223583259 cites W2157305458 @default.
- W4223583259 cites W2593277761 @default.
- W4223583259 cites W2599003897 @default.
- W4223583259 cites W2604468722 @default.
- W4223583259 cites W2760861884 @default.
- W4223583259 cites W2796672611 @default.
- W4223583259 cites W2803790834 @default.
- W4223583259 cites W2819713423 @default.
- W4223583259 cites W2891109850 @default.
- W4223583259 cites W2900322842 @default.
- W4223583259 cites W2919115771 @default.
- W4223583259 cites W2963446712 @default.
- W4223583259 cites W2981914352 @default.
- W4223583259 cites W3086140914 @default.
- W4223583259 cites W3088623196 @default.
- W4223583259 cites W3099859964 @default.
- W4223583259 cites W3212798786 @default.
- W4223583259 doi "https://doi.org/10.1016/j.ymeth.2022.04.001" @default.
- W4223583259 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35413441" @default.
- W4223583259 hasPublicationYear "2022" @default.
- W4223583259 type Work @default.
- W4223583259 citedByCount "1" @default.
- W4223583259 countsByYear W42235832592022 @default.
- W4223583259 crossrefType "journal-article" @default.
- W4223583259 hasAuthorship W4223583259A5009624071 @default.
- W4223583259 hasAuthorship W4223583259A5023139838 @default.
- W4223583259 hasAuthorship W4223583259A5050322657 @default.
- W4223583259 hasAuthorship W4223583259A5072071140 @default.
- W4223583259 hasAuthorship W4223583259A5077201708 @default.
- W4223583259 hasAuthorship W4223583259A5079572594 @default.
- W4223583259 hasAuthorship W4223583259A5080102032 @default.
- W4223583259 hasConcept C103278499 @default.
- W4223583259 hasConcept C108583219 @default.
- W4223583259 hasConcept C111919701 @default.
- W4223583259 hasConcept C115961682 @default.
- W4223583259 hasConcept C121332964 @default.
- W4223583259 hasConcept C124504099 @default.
- W4223583259 hasConcept C153180895 @default.
- W4223583259 hasConcept C154945302 @default.
- W4223583259 hasConcept C15744967 @default.
- W4223583259 hasConcept C19417346 @default.
- W4223583259 hasConcept C202474056 @default.
- W4223583259 hasConcept C20556612 @default.
- W4223583259 hasConcept C2775936607 @default.
- W4223583259 hasConcept C2781238097 @default.
- W4223583259 hasConcept C31972630 @default.
- W4223583259 hasConcept C41008148 @default.
- W4223583259 hasConcept C62520636 @default.
- W4223583259 hasConcept C81363708 @default.
- W4223583259 hasConcept C89600930 @default.
- W4223583259 hasConcept C98045186 @default.
- W4223583259 hasConceptScore W4223583259C103278499 @default.
- W4223583259 hasConceptScore W4223583259C108583219 @default.
- W4223583259 hasConceptScore W4223583259C111919701 @default.
- W4223583259 hasConceptScore W4223583259C115961682 @default.
- W4223583259 hasConceptScore W4223583259C121332964 @default.
- W4223583259 hasConceptScore W4223583259C124504099 @default.
- W4223583259 hasConceptScore W4223583259C153180895 @default.
- W4223583259 hasConceptScore W4223583259C154945302 @default.
- W4223583259 hasConceptScore W4223583259C15744967 @default.
- W4223583259 hasConceptScore W4223583259C19417346 @default.
- W4223583259 hasConceptScore W4223583259C202474056 @default.
- W4223583259 hasConceptScore W4223583259C20556612 @default.
- W4223583259 hasConceptScore W4223583259C2775936607 @default.
- W4223583259 hasConceptScore W4223583259C2781238097 @default.
- W4223583259 hasConceptScore W4223583259C31972630 @default.
- W4223583259 hasConceptScore W4223583259C41008148 @default.
- W4223583259 hasConceptScore W4223583259C62520636 @default.
- W4223583259 hasConceptScore W4223583259C81363708 @default.
- W4223583259 hasConceptScore W4223583259C89600930 @default.
- W4223583259 hasConceptScore W4223583259C98045186 @default.
- W4223583259 hasFunder F4320321001 @default.
- W4223583259 hasFunder F4320321543 @default.
- W4223583259 hasLocation W42235832591 @default.
- W4223583259 hasLocation W42235832592 @default.
- W4223583259 hasOpenAccess W4223583259 @default.
- W4223583259 hasPrimaryLocation W42235832591 @default.