Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311663798> ?p ?o ?g. }
- W4311663798 abstract "Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits. Rabies retrograde monosynaptic tracing has been used to label premotor interneurons innervating specific motor neuron pools, with previous studies reporting topographic mediolateral positional biases in flexor and extensor premotor interneurons. To more precisely define how premotor interneurons contacting specific motor pools are organized, we used multiple complementary viral-tracing approaches in mice to minimize systematic biases associated with each method. Contrary to expectations, we found that premotor interneurons contacting motor pools controlling flexion and extension of the ankle are highly intermingled rather than segregated into specific domains like motor neurons. Thus, premotor spinal neurons controlling different muscles process motor instructions in the absence of clear spatial patterns among the flexor-extensor circuit components.The spinal cord contains circuits of nerve cells that control how the body moves. Within these networks are interneurons that project to motor neurons, which innervate different types of muscle to contract: flexors (such as the biceps), which bend, or ‘flex’, the body’s joints, and extensors (such as the triceps), which lead to joint extension. These motor signals must be carefully coordinated to allow precise and stable control of the body’s movements. Previous studies suggest that where interneurons are placed in the spinal cord depends on whether they activate the motor neurons responsible for flexion or extension. To test if these findings were reproducible, Ronzano, Skarlatou, Barriga, Bannatyne, Bhumbra et al. studied interneurons which flex and extend the ankle joint in mice. In collaboration with several laboratories, the team used a combination of techniques to trace how interneurons and motor neurons were connected in the mouse spinal cord. This revealed that regardless of the method used or the laboratory in which the experiments were performed, the distribution of interneurons associated with flexion and extension overlapped one another. This finding contradicts previously published results and suggests that interneurons in the spinal cord are not segregated based on their outputs. Instead, they may be positioned based on the signals they receive, similar to motor neurons. Understanding where interneurons in the spinal cord are placed will provide new insights on how movement is controlled and how it is impacted by injuries and disease. In the future, this knowledge could benefit work on how neural circuits in the spinal cord are formed and how they can be regenerated." @default.
- W4311663798 created "2022-12-27" @default.
- W4311663798 creator A5003736273 @default.
- W4311663798 creator A5012807640 @default.
- W4311663798 creator A5015107357 @default.
- W4311663798 creator A5016595523 @default.
- W4311663798 creator A5021189830 @default.
- W4311663798 creator A5041448701 @default.
- W4311663798 creator A5043970902 @default.
- W4311663798 creator A5045463206 @default.
- W4311663798 creator A5048298182 @default.
- W4311663798 creator A5052468955 @default.
- W4311663798 creator A5061855470 @default.
- W4311663798 creator A5064928195 @default.
- W4311663798 creator A5067655736 @default.
- W4311663798 creator A5068359564 @default.
- W4311663798 creator A5070722958 @default.
- W4311663798 creator A5073182896 @default.
- W4311663798 creator A5085952776 @default.
- W4311663798 creator A5087001745 @default.
- W4311663798 date "2022-12-13" @default.
- W4311663798 modified "2023-10-17" @default.
- W4311663798 title "Spinal premotor interneurons controlling antagonistic muscles are spatially intermingled" @default.
- W4311663798 cites W1506374293 @default.
- W4311663798 cites W1587475087 @default.
- W4311663798 cites W1676995846 @default.
- W4311663798 cites W1900223329 @default.
- W4311663798 cites W1968445283 @default.
- W4311663798 cites W1976819030 @default.
- W4311663798 cites W1980143518 @default.
- W4311663798 cites W1981426699 @default.
- W4311663798 cites W1987359352 @default.
- W4311663798 cites W2005491819 @default.
- W4311663798 cites W2030644998 @default.
- W4311663798 cites W2035913764 @default.
- W4311663798 cites W2044890387 @default.
- W4311663798 cites W2059527510 @default.
- W4311663798 cites W2068557081 @default.
- W4311663798 cites W2083249373 @default.
- W4311663798 cites W2086991865 @default.
- W4311663798 cites W2089404972 @default.
- W4311663798 cites W2089698459 @default.
- W4311663798 cites W2091248412 @default.
- W4311663798 cites W2091312806 @default.
- W4311663798 cites W2093022584 @default.
- W4311663798 cites W2107905188 @default.
- W4311663798 cites W2115487032 @default.
- W4311663798 cites W2117010166 @default.
- W4311663798 cites W2123004503 @default.
- W4311663798 cites W2125499523 @default.
- W4311663798 cites W2126912196 @default.
- W4311663798 cites W2139741076 @default.
- W4311663798 cites W2148854734 @default.
- W4311663798 cites W2162056974 @default.
- W4311663798 cites W2164826784 @default.
- W4311663798 cites W2256675298 @default.
- W4311663798 cites W2290082869 @default.
- W4311663798 cites W2335967836 @default.
- W4311663798 cites W2611870887 @default.
- W4311663798 cites W2732659671 @default.
- W4311663798 cites W2757601258 @default.
- W4311663798 cites W2794063115 @default.
- W4311663798 cites W2929129033 @default.
- W4311663798 cites W2944132366 @default.
- W4311663798 cites W2952188332 @default.
- W4311663798 cites W3033770688 @default.
- W4311663798 cites W3045031933 @default.
- W4311663798 cites W3080873984 @default.
- W4311663798 cites W3123262423 @default.
- W4311663798 cites W3128622980 @default.
- W4311663798 cites W3205535563 @default.
- W4311663798 cites W4226344224 @default.
- W4311663798 cites W4282577743 @default.
- W4311663798 cites W4285239634 @default.
- W4311663798 cites W4311663798 @default.
- W4311663798 cites W792393746 @default.
- W4311663798 doi "https://doi.org/10.7554/elife.81976" @default.
- W4311663798 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36512397" @default.
- W4311663798 hasPublicationYear "2022" @default.
- W4311663798 type Work @default.
- W4311663798 citedByCount "4" @default.
- W4311663798 countsByYear W43116637982022 @default.
- W4311663798 countsByYear W43116637982023 @default.
- W4311663798 crossrefType "journal-article" @default.
- W4311663798 hasAuthorship W4311663798A5003736273 @default.
- W4311663798 hasAuthorship W4311663798A5012807640 @default.
- W4311663798 hasAuthorship W4311663798A5015107357 @default.
- W4311663798 hasAuthorship W4311663798A5016595523 @default.
- W4311663798 hasAuthorship W4311663798A5021189830 @default.
- W4311663798 hasAuthorship W4311663798A5041448701 @default.
- W4311663798 hasAuthorship W4311663798A5043970902 @default.
- W4311663798 hasAuthorship W4311663798A5045463206 @default.
- W4311663798 hasAuthorship W4311663798A5048298182 @default.
- W4311663798 hasAuthorship W4311663798A5052468955 @default.
- W4311663798 hasAuthorship W4311663798A5061855470 @default.
- W4311663798 hasAuthorship W4311663798A5064928195 @default.
- W4311663798 hasAuthorship W4311663798A5067655736 @default.
- W4311663798 hasAuthorship W4311663798A5068359564 @default.
- W4311663798 hasAuthorship W4311663798A5070722958 @default.
- W4311663798 hasAuthorship W4311663798A5073182896 @default.