Matches in SemOpenAlex for { <https://semopenalex.org/work/W1042414504> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1042414504 abstract "Recent advances in computer technology offer to the medical profession specialized tools for gathering medical data, processing power, as well as fast storing and retrieving capabilities. Artificial intelligence (AI), an emerging field of computer science is studying the issues of human problem solving and decision making. Furthermore, rule-based systems and knowledge-based systems that are other fields of AI have been adopted by many scientists in an effort to develop intelligent medical diagnostic systems. In this study artificial neural networks (ANN) are introduced as a tool for building an intelligent diagnostic system; the system does not attempt to replace the physician from being the decision maker but to enhance ones facilities for reaching a correct decision. An integrated diagnostic system for assessing certain neuromuscular disorders is used in this study as an example for demonstrating the proposed methodology. The diagnostic system is composed of modules that independently provide numerical data to the system from the clinical examination of a patient, and from various laboratory tests that are performed. The examination procedure has been standardized by developing protocols for each specialized area, in cooperation with experts in the area. At the conclusion of the clinical examination and laboratory tests, data in the form of a numerical vector represents a medical examination snapshot of the subject. Artificial neural network (ANN) models were developed using the unsupervised self-organizing feature maps algorithm. Data from 71 subjects were collected. The ANN models were trained with the data from 41 subjects, and tested with the data from the remaining 30 subjects. Two sets of models were developed; those trained with the data from only the clinical examinations; and those trained by combining the clinical and the laboratory test data. The diagnostic yield that was obtained for the unknown cases is in the region of 73 to 93% for the models trained with only the clinical data, and in the region of 73 to 100% for those trained by combining both the clinical and laboratory data. The pictorial representation of the diagnostic models through the self organized two dimensional feature maps provide the physician with a friendly human-computer interface and a comprehensive tool that can be used for further observations, for example in monitoring disease progression of a subject." @default.
- W1042414504 created "2016-06-24" @default.
- W1042414504 creator A5000914515 @default.
- W1042414504 creator A5021668832 @default.
- W1042414504 creator A5043659580 @default.
- W1042414504 date "1994-06-01" @default.
- W1042414504 modified "2023-09-27" @default.
- W1042414504 title "Medical diagnostic systems: a case for neural networks" @default.
- W1042414504 doi "https://doi.org/10.3233/thc-1994-2101" @default.
- W1042414504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25273802" @default.
- W1042414504 hasPublicationYear "1994" @default.
- W1042414504 type Work @default.
- W1042414504 sameAs 1042414504 @default.
- W1042414504 citedByCount "10" @default.
- W1042414504 countsByYear W10424145042012 @default.
- W1042414504 countsByYear W10424145042014 @default.
- W1042414504 crossrefType "journal-article" @default.
- W1042414504 hasAuthorship W1042414504A5000914515 @default.
- W1042414504 hasAuthorship W1042414504A5021668832 @default.
- W1042414504 hasAuthorship W1042414504A5043659580 @default.
- W1042414504 hasConcept C107327155 @default.
- W1042414504 hasConcept C111919701 @default.
- W1042414504 hasConcept C119857082 @default.
- W1042414504 hasConcept C154945302 @default.
- W1042414504 hasConcept C202444582 @default.
- W1042414504 hasConcept C33923547 @default.
- W1042414504 hasConcept C41008148 @default.
- W1042414504 hasConcept C50644808 @default.
- W1042414504 hasConcept C55282118 @default.
- W1042414504 hasConcept C56397880 @default.
- W1042414504 hasConcept C58328972 @default.
- W1042414504 hasConcept C9652623 @default.
- W1042414504 hasConceptScore W1042414504C107327155 @default.
- W1042414504 hasConceptScore W1042414504C111919701 @default.
- W1042414504 hasConceptScore W1042414504C119857082 @default.
- W1042414504 hasConceptScore W1042414504C154945302 @default.
- W1042414504 hasConceptScore W1042414504C202444582 @default.
- W1042414504 hasConceptScore W1042414504C33923547 @default.
- W1042414504 hasConceptScore W1042414504C41008148 @default.
- W1042414504 hasConceptScore W1042414504C50644808 @default.
- W1042414504 hasConceptScore W1042414504C55282118 @default.
- W1042414504 hasConceptScore W1042414504C56397880 @default.
- W1042414504 hasConceptScore W1042414504C58328972 @default.
- W1042414504 hasConceptScore W1042414504C9652623 @default.
- W1042414504 hasLocation W10424145041 @default.
- W1042414504 hasLocation W10424145042 @default.
- W1042414504 hasOpenAccess W1042414504 @default.
- W1042414504 hasPrimaryLocation W10424145041 @default.
- W1042414504 hasRelatedWork W135407160 @default.
- W1042414504 hasRelatedWork W1481045113 @default.
- W1042414504 hasRelatedWork W1521264670 @default.
- W1042414504 hasRelatedWork W17650898 @default.
- W1042414504 hasRelatedWork W1914070976 @default.
- W1042414504 hasRelatedWork W1982893061 @default.
- W1042414504 hasRelatedWork W2026012702 @default.
- W1042414504 hasRelatedWork W2078090701 @default.
- W1042414504 hasRelatedWork W2101113806 @default.
- W1042414504 hasRelatedWork W2120380005 @default.
- W1042414504 hasRelatedWork W2126766093 @default.
- W1042414504 hasRelatedWork W2129216769 @default.
- W1042414504 hasRelatedWork W2137687977 @default.
- W1042414504 hasRelatedWork W2171857031 @default.
- W1042414504 hasRelatedWork W2299897280 @default.
- W1042414504 hasRelatedWork W2600604807 @default.
- W1042414504 hasRelatedWork W3121299944 @default.
- W1042414504 hasRelatedWork W3167192841 @default.
- W1042414504 hasRelatedWork W578755003 @default.
- W1042414504 hasRelatedWork W596716175 @default.
- W1042414504 isParatext "false" @default.
- W1042414504 isRetracted "false" @default.
- W1042414504 magId "1042414504" @default.
- W1042414504 workType "article" @default.