Matches in SemOpenAlex for { <https://semopenalex.org/work/W121412008> ?p ?o ?g. }
- W121412008 abstract "Information extraction is a process that extracts limited semantic concepts from text documents and presents them in an organized way. Unlike several other natural language tasks, information extraction has a direct impact on end-user applications. Despite its importance, information ex traction is still a difficult task due to the inherent complexity and ambiguity of human languages. Moreover, mutual dependencies between local predictions of the target concepts further increase difficulty of the task. In order to enhance information extraction technologies, we develop general approaches for two aspects—relational feature generation and global inference with classifiers. It has been quite convincingly argued that relational learning is suitable in training a complicated natural language system. We propose a relational feature generation approach that facilitates relational learning through propositional learning algorithms. In particular, we develop a relational representation language to produce features in a data driven way. The resulting features capture the relational structures of a given domain, and therefore allow the learning algorithms to effectively learn the relational definitions of target concepts. Although the learned classifier can be used to directly predict the target concepts, conflicts between the labels of different target variables often occur due to imperfect classifiers. We propose an inference framework to correct mistakes of the local predictions by using the predictions and task-dependent constraints to produce the best global assignment. This inference framework can be modeled by a Bayesian network or integer linear programming. The proposed learning and inference frameworks have been applied to a variety of information extraction tasks, including entity extraction, entity/relation recognition, and semantic role labeling." @default.
- W121412008 created "2016-06-24" @default.
- W121412008 creator A5023802054 @default.
- W121412008 creator A5066873932 @default.
- W121412008 date "2005-01-01" @default.
- W121412008 modified "2023-09-23" @default.
- W121412008 title "Learning and inference for information extraction" @default.
- W121412008 cites W10972377 @default.
- W121412008 cites W12836875 @default.
- W121412008 cites W145476170 @default.
- W121412008 cites W1482577311 @default.
- W121412008 cites W1501468703 @default.
- W121412008 cites W1506152736 @default.
- W121412008 cites W1525460779 @default.
- W121412008 cites W1528547644 @default.
- W121412008 cites W1530251607 @default.
- W121412008 cites W1535936886 @default.
- W121412008 cites W1540916400 @default.
- W121412008 cites W1554663460 @default.
- W121412008 cites W1560512119 @default.
- W121412008 cites W156274344 @default.
- W121412008 cites W1572684271 @default.
- W121412008 cites W1589939704 @default.
- W121412008 cites W1592259070 @default.
- W121412008 cites W1597379537 @default.
- W121412008 cites W1598511582 @default.
- W121412008 cites W1601368642 @default.
- W121412008 cites W1602152045 @default.
- W121412008 cites W1610301803 @default.
- W121412008 cites W1619260253 @default.
- W121412008 cites W1632114991 @default.
- W121412008 cites W1647622147 @default.
- W121412008 cites W1734803745 @default.
- W121412008 cites W1768418803 @default.
- W121412008 cites W1781547478 @default.
- W121412008 cites W1785889609 @default.
- W121412008 cites W1806329564 @default.
- W121412008 cites W1843649836 @default.
- W121412008 cites W1894570520 @default.
- W121412008 cites W191711976 @default.
- W121412008 cites W1963547452 @default.
- W121412008 cites W1964669037 @default.
- W121412008 cites W1964821516 @default.
- W121412008 cites W1979711143 @default.
- W121412008 cites W1983168840 @default.
- W121412008 cites W1985754308 @default.
- W121412008 cites W1987902506 @default.
- W121412008 cites W1991566372 @default.
- W121412008 cites W1994485670 @default.
- W121412008 cites W1996824494 @default.
- W121412008 cites W1997390900 @default.
- W121412008 cites W1999138184 @default.
- W121412008 cites W2016522586 @default.
- W121412008 cites W2028114094 @default.
- W121412008 cites W2028137574 @default.
- W121412008 cites W204260652 @default.
- W121412008 cites W2061130579 @default.
- W121412008 cites W2061529719 @default.
- W121412008 cites W2078029048 @default.
- W121412008 cites W2081349491 @default.
- W121412008 cites W2092654472 @default.
- W121412008 cites W2097125878 @default.
- W121412008 cites W2098704351 @default.
- W121412008 cites W2098921539 @default.
- W121412008 cites W2102381086 @default.
- W121412008 cites W2113243831 @default.
- W121412008 cites W2118996379 @default.
- W121412008 cites W2119831128 @default.
- W121412008 cites W2121300346 @default.
- W121412008 cites W2121906195 @default.
- W121412008 cites W2128765501 @default.
- W121412008 cites W2129113961 @default.
- W121412008 cites W2129665406 @default.
- W121412008 cites W2135764410 @default.
- W121412008 cites W2136430326 @default.
- W121412008 cites W2143349571 @default.
- W121412008 cites W2144578941 @default.
- W121412008 cites W2145310422 @default.
- W121412008 cites W2145948275 @default.
- W121412008 cites W2147880316 @default.
- W121412008 cites W2150203234 @default.
- W121412008 cites W2154626406 @default.
- W121412008 cites W2155693943 @default.
- W121412008 cites W2155800811 @default.
- W121412008 cites W2155925463 @default.
- W121412008 cites W2157800108 @default.
- W121412008 cites W2158292827 @default.
- W121412008 cites W2158941357 @default.
- W121412008 cites W2161290181 @default.
- W121412008 cites W2162340487 @default.
- W121412008 cites W2163915185 @default.
- W121412008 cites W2164949130 @default.
- W121412008 cites W2167044614 @default.
- W121412008 cites W2171775879 @default.
- W121412008 cites W2200350575 @default.
- W121412008 cites W2299457751 @default.
- W121412008 cites W2322002063 @default.
- W121412008 cites W2336259629 @default.
- W121412008 cites W2885050925 @default.
- W121412008 cites W2963983968 @default.