Matches in SemOpenAlex for { <https://semopenalex.org/work/W1982146541> ?p ?o ?g. }
- W1982146541 endingPage "17900" @default.
- W1982146541 startingPage "17893" @default.
- W1982146541 abstract "We cloned a novel matrix metalloproteinase (MMP) called CMMP from cultured primary chicken embryo fibroblasts. The cDNA-derived CMMP sequence contains 472 amino acids including a putative 19-residue signal peptide and a unique cysteine in the catalytic domain, an insertion in a sequence motif that binds the structural (noncatalytic) zinc of MMPs. Strikingly, a homologously inserted cysteine is also found in Xenopus XMMP and human MMP19, two recently cloned novel members of the MMP family. Phylogenetic analysis suggest that XMMP and MMP19 represent founding members of the MMP family, whereas CMMP is related to collagenase MMPs. Bacterially produced recombinant CMMP (without the amino-terminal inhibition domain), which was autoproteolyzed at the carboxyl-terminal domain, digested casein and gelatin. As shown by Northern blotting, CMMP mRNA of 1.8 kilobase pairs was constitutively expressed in cultured primary chicken embryo fibroblasts and up-regulated by tumor necrosis factor-α and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, but it was not regulated by interleukin-1, basic fibroblast growth factor, or retinoic acid. CMMP mRNA of 1.8 kb was also detected in the head and body of 8-day-old chicken embryos and dramatically up-regulated in 9-day-old embryos. We cloned a novel matrix metalloproteinase (MMP) called CMMP from cultured primary chicken embryo fibroblasts. The cDNA-derived CMMP sequence contains 472 amino acids including a putative 19-residue signal peptide and a unique cysteine in the catalytic domain, an insertion in a sequence motif that binds the structural (noncatalytic) zinc of MMPs. Strikingly, a homologously inserted cysteine is also found in Xenopus XMMP and human MMP19, two recently cloned novel members of the MMP family. Phylogenetic analysis suggest that XMMP and MMP19 represent founding members of the MMP family, whereas CMMP is related to collagenase MMPs. Bacterially produced recombinant CMMP (without the amino-terminal inhibition domain), which was autoproteolyzed at the carboxyl-terminal domain, digested casein and gelatin. As shown by Northern blotting, CMMP mRNA of 1.8 kilobase pairs was constitutively expressed in cultured primary chicken embryo fibroblasts and up-regulated by tumor necrosis factor-α and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, but it was not regulated by interleukin-1, basic fibroblast growth factor, or retinoic acid. CMMP mRNA of 1.8 kb was also detected in the head and body of 8-day-old chicken embryos and dramatically up-regulated in 9-day-old embryos. Degradation and remodeling of the extracellular matrix (ECM) 1The abbreviations used are: ECM, extracellular matrix; EST, expressed sequence tag; FGF, fibroblast growth factor; IL-1, interleukin-1β; TNF, tumor necrosis factor-α; MMP, matrix metalloproteinase; MOPS, 4-morpholinepropanesulfonic acid; MT-MMP, membrane-type MMP; PCR, polymerase chain reaction; TPA, 12-O-tetradecanoylphorbol-13-acetate; bp, base pair(s); kb, kilobase pair(s). 1The abbreviations used are: ECM, extracellular matrix; EST, expressed sequence tag; FGF, fibroblast growth factor; IL-1, interleukin-1β; TNF, tumor necrosis factor-α; MMP, matrix metalloproteinase; MOPS, 4-morpholinepropanesulfonic acid; MT-MMP, membrane-type MMP; PCR, polymerase chain reaction; TPA, 12-O-tetradecanoylphorbol-13-acetate; bp, base pair(s); kb, kilobase pair(s). is thought to play important morphogenic roles during growth and development. ECM degradation is largely controlled by a superfamily of zinc-dependent endopeptidases called matrix metalloproteinases (MMPs). At present, 18 different MMPs have been cloned and characterized (1Woessner Jr., J.F. FASEB J. 1991; 5: 2145-2154Crossref PubMed Scopus (3072) Google Scholar, 2Matrisian L.M. BioEssays. 1992; 6: 121-125Google Scholar, 3Werb Z. Alexander C.M. Kelley W.M. Harris Jr., E.D. Ruddy S. Sledge C.B. Textbook of Rheumatology. 4th Ed. W. B. Saunders Co., Philadelphia1994: 248-268Google Scholar, 4Birkedal-Hansen H. Curr. Opin. Cell Biol. 1995; 7: 728-735Crossref PubMed Scopus (974) Google Scholar, 5Cossins J. Dudgeon T.J. Catlin G. Gearing A.J.H. Clements J.M. Biochem. Biophys. Res. Commun. 1996; 228: 494-498Crossref PubMed Scopus (102) Google Scholar, 6Stolov M.A. Bauzon D.D. Li J. Sedgwick T. Liang V.C.-T. Sang Q.A. Shi Y.-B. Mol. Biol. Cell. 1996; 7: 1471-1483Crossref PubMed Scopus (125) Google Scholar, 7Bartlett J.D. Simmer J.P. Xue J. Margolis H.C. Moreno E.C. Gene ( Amst. ). 1996; 183: 123-128Crossref PubMed Scopus (176) Google Scholar, 8Pendas A.M. Knauper V. Puente X.S. Llano E. Mattei M.-G. Apte S. Murphy G. Lopez-Otin C. J. Biol. Chem. 1997; 272: 4281-4286Abstract Full Text Full Text PDF PubMed Scopus (180) Google Scholar), including a novel MMP that we cloned from the frog Xenopus laevis embryos (9Yang M. Murray M.T. Kurkinen M. J. Biol. Chem. 1997; 272: 13527-13533Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar). MMPs share similar domains with distinct structure and function, have wide and often overlapping substrate specificities, and are usually grouped as collagenases, gelatinases, stromelysins, and membrane-type MMPs.Collagenases are the only enzymes that can cleave the triple helical regions of interstitial fibrillar collagens such as collagen types I, II, and III, the most abundant proteins in the body. The cleavage occurs at one specific peptide bond, Gly775–Ile776 (Leu776 in the α2(I)-chain) in type I collagen and leads to unfolding and denaturation of the fibrillar collagens. Gelatinases A and B, also known as 72- and 92-kDa type IV collagenases, digest denatured collagen (gelatin) and components of basement membranes, a special type of ECM of epithelial, endothelial, fat, muscle, and peripheral nerve cells (10Martin G.R. Timpl R. Kuhn K. Adv. Prot. Chem. 1988; 39: 1-50Crossref PubMed Scopus (114) Google Scholar). Stromelysins are three different MMPs with wide substrate specificity, and stromelysin-1 can degrade almost any ECM component including cartilage proteoglycans (11Bonassar L.J. Frank E.H. Murray J.C. Paguio C.G. Moore V.L. Lark M.W. Sandy J.D. Wu J.J. Eyre D.R. Grodzinsky A.J. Arthritis Rheum. 1995; 38: 173-183Crossref PubMed Scopus (140) Google Scholar). Recently, four new members of the MMP family called membrane-type MMPs (MT-MMPs) were cloned (12Sato H. Takino T. Okada Y. Cao J. Shinagawa A. Yamamoto E. Seiki M. Nature. 1994; 370: 61-65Crossref PubMed Scopus (2365) Google Scholar, 13Okada A. Bellocq J.-P. Royer N. Chenard M.-P. Rio M.-C. Chambon P. Basset P. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 2730-2734Crossref PubMed Scopus (486) Google Scholar, 14Will H. Hinzmann B. Eur. J. Biochem. 1995; 231: 602-608Crossref PubMed Scopus (317) Google Scholar, 15Takino T. Sato H. Shinagawa A. Seiki M. J. Biol. Chem. 1995; 270: 23013-23020Abstract Full Text Full Text PDF PubMed Scopus (447) Google Scholar, 16Puente X.S. Pendas A.M. Liano E. Velasco G. Lopez-Otin C. Cancer Res. 1996; 56: 944-949PubMed Google Scholar, 17Yang M. Hayashi K. Hayashi M. Fujii J.T. Kurkinen M. J. Biol. Chem. 1996; 271: 25548-25554Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar). They are not secreted extracellularly but remain on the cell surface through their carboxyl-terminal transmembrane domain. Recently, however, Matsumoto et al. (18Matsumoto S. Katoh M. Saito S. Watanabe T. Masuho Y. Biochim. Biophys. Acta. 1997; 1354: 159-170Crossref PubMed Scopus (87) Google Scholar) characterized a secreted form of MT3-MMP encoded by an alternatively spliced mRNA. MT-MMPs degrade ECM components, proteolytically cleave and activate 72-kDa type IV collagenase, and therefore may regulate pericellular matrix degradation at the cell surface (19Pei D. Weiss S.J. J. Biol. Chem. 1996; 271: 9135-9140Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 20Cao J. Rehemtulla A. Bahou W. Zucker S. J. Biol. Chem. 1996; 271: 30174-30180Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 21Ohuchi E. Imai K. Fujii Y. Sato H. Seiki M. Okada Y. J. Biol. Chem. 1997; 272: 2446-2451Abstract Full Text Full Text PDF PubMed Scopus (827) Google Scholar).MMPs are produced as inactive precursors, which are activated by proteolytic removal of their amino-terminal domain, a 78–178-residue-long propeptide (22Strongin A.Y. Collier I. Bannikov G. Marmer B.L. Grant G.A. Goldberg G.I. J. Biol. Chem. 1995; 270: 5331-5338Abstract Full Text Full Text PDF PubMed Scopus (1434) Google Scholar, 23Pei D. Weiss S.J. Nature. 1995; 375: 244-247Crossref PubMed Scopus (530) Google Scholar, 24Benbow U. Butticé G. Nagase H. Kurkinen M. J. Biol. Chem. 1996; 271: 10715-10722Abstract Full Text Full Text PDF PubMed Scopus (24) Google Scholar). Thus, it is striking that stromelysin-1 (MMP3) proteolytically activates at least five other members of the MMP family including interstitial collagenase-1 (MMP1), matrilysin (MMP7), neutrophil collagenase-2 (MMP8), 92-kDa type IV collagenase (MMP9), and collagenase-3 (MMP13), suggesting that stromelysin-1 plays a special “upstream” role in ECM degradation and remodeling (25Murphy G. Cockett M.I. Stephens P.E. Smith B.J. Docherty A.J.P. Biochem. J. 1987; 248: 265-268Crossref PubMed Scopus (390) Google Scholar, 26Ogata Y. Enghild J.J. Nagase H. J. Biol. Chem. 1992; 267: 3581-3584Abstract Full Text PDF PubMed Google Scholar, 27Imai K. Yokohama Y. Nakanishi I. Ohuchi E. Fujii Y. Nakai N. Okada Y. J. Biol. Chem. 1995; 270: 6691-6697Abstract Full Text Full Text PDF PubMed Scopus (264) Google Scholar, 28Knauper V. Wilhelm S.M. Seperack P.K. DeClerck Y.A. Langley K.E. Osthues A. Tschesche H. Biochem. J. 1993; 295: 581-586Crossref PubMed Scopus (152) Google Scholar, 29Knauper V. Lopez-Otin C. Smith B. Knight G. Murphy G. J. Biol. Chem. 1996; 271: 1544-1558Abstract Full Text Full Text PDF PubMed Scopus (782) Google Scholar). Recently, Okamoto et al. (30Okamoto T. Akaike T. Suga M. Tanase S. Horie H. Miyajima S. Ando M. Ichinose Y. Maeda H. J. Biol. Chem. 1997; 272: 6059-6066Abstract Full Text Full Text PDF PubMed Scopus (139) Google Scholar) reported that various bacterial proteinases can also activate MMP1, MMP2, and MMP9.MMPs are expressed widely during embryogenesis, often in a highly tissue- and cell-specific pattern, suggesting distinct roles for MMPs in growth and development (17Yang M. Hayashi K. Hayashi M. Fujii J.T. Kurkinen M. J. Biol. Chem. 1996; 271: 25548-25554Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 31Brenner C.A. Adler R.R. Rappolee D.A. Pedersen R.A. Werb Z. Genes Dev. 1989; 3: 848-859Crossref PubMed Scopus (239) Google Scholar, 32Mattot V. Raes M.B. Henriet P. Eeckhout Y. Stehelin D. Vandenbunder B. Desbiens X. J. Cell Sci. 1995; 108: 529-535Crossref PubMed Google Scholar, 33Gack S. Vallon R. Schmidt J. Grigoriadis A. Tuckermann J. Schenkel J. Wiher H. Wagner E.F. Angel P. Cell Growth Differ. 1995; 6: 759-767PubMed Google Scholar, 34Witty J.P. Wright J.H. Matrisian L.M. Mol. Biol. Cell. 1995; 6: 1287-1303Crossref PubMed Scopus (169) Google Scholar, 35Reponen P. Sahlberg C. Munaut C. Thesleff I. Tryggvason K. J. Cell Biol. 1994; 124: 1091-1102Crossref PubMed Scopus (249) Google Scholar, 36Canete-Soler R. Gui Y.-H. Linask K.K. Muschel R.J. Dev. Dyn. 1995; 204: 30-40Crossref PubMed Scopus (54) Google Scholar, 37Sato T. del Carmen Ovejero M. Heegaard A.-M. Kumegawa M. Foged N.T. Delaisse J.-M. J. Cell Sci. 1997; 110: 589-596Crossref PubMed Google Scholar). In adult life, MMPs are rarely expressed except in rapidly remodeling tissues such as the term placenta, menstrual endometrium, and involuting mammary glands and during wound healing and inflammation (38Belaaouaj A. Shipley J.M. Kobayashi D.K. Zimonjic D.B. Popescu N. Silverman G.A. Shapiro S.D. J. Biol. Chem. 1995; 270: 14568-14575Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar, 39Boudreau N. Sympson C.J. Werb Z. Bissell M.J. Science. 1995; 267: 891-893Crossref PubMed Scopus (1113) Google Scholar, 40Kokorine I. Marbaix E. Henriet P. Okada Y. Donnez J. Eeckhout Y. Courtoy P.J. J. Cell Sci. 1996; 109: 2151-21608PubMed Google Scholar, 41Rodgers W.H. Matrisian L.M. Giudice L.L. Dsupin N. Cannon P. Svitek C. Gorstein F. Osteen K.G. J. Clin. Invest. 1994; 94: 946-953Crossref PubMed Scopus (358) Google Scholar, 42Okada A. Tomasetto C. Lutz Y. Bellocq J.-P. Rio M.-C. Basset P. J. Cell Biol. 1997; 137: 67-77Crossref PubMed Scopus (192) Google Scholar). MMPs are also thought to play a critical role in tumor growth and metastasis (43Stetler-Stevenson W.G. Aznavoorian S. Liotta L.A. Annu. Rev. Cell Biol. 1993; 9: 541-573Crossref PubMed Scopus (1515) Google Scholar, 44MacDougall J.R. Matrisian L.M. Cancer Metastasis Rev. 1995; 14: 351-362Crossref PubMed Scopus (400) Google Scholar) and in the progression of other diseases such as arthritis, atherosclerosis, and aneurysm (3Werb Z. Alexander C.M. Kelley W.M. Harris Jr., E.D. Ruddy S. Sledge C.B. Textbook of Rheumatology. 4th Ed. W. B. Saunders Co., Philadelphia1994: 248-268Google Scholar, 45Newman K.M. Ogata Y. Malon A.M. Irizarry E. Gandhi R.H. Nagase H. Tilson M.D. Arterioscler. Thromb. 1994; 14: 1315-1320Crossref PubMed Google Scholar, 46Vincenti M.P. Clark I.M. Brinckerhoff C.E. Arthritis Rheum. 1994; 37: 1115-1126Crossref PubMed Scopus (189) Google Scholar, 47Ye S. Eriksson P. Hamsten A. Kurkinen M. Humphries S.E. Henney A.M. J. Biol. Chem. 1996; 271: 13055-13060Abstract Full Text Full Text PDF PubMed Scopus (438) Google Scholar).To study the role of ECM degradation and remodeling in early vertebrate development, we are cloning MMPs and tissue inhibitors of metalloproteinases from chicken embryos and cultured cells (17Yang M. Hayashi K. Hayashi M. Fujii J.T. Kurkinen M. J. Biol. Chem. 1996; 271: 25548-25554Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar). Here we describe the cloning and characterization of a novel member of the MMP family, called CMMP, from cultured primary chicken embryo fibroblasts. A cDNA-derived CMMP sequence contains 472 amino acids including a putative 19-residue signal peptide and a unique cysteine in the catalytic domain. A homologously placed cysteine is found only inXenopus XMMP and human MMP19, two recently cloned novel MMPs (5Cossins J. Dudgeon T.J. Catlin G. Gearing A.J.H. Clements J.M. Biochem. Biophys. Res. Commun. 1996; 228: 494-498Crossref PubMed Scopus (102) Google Scholar, 8Pendas A.M. Knauper V. Puente X.S. Llano E. Mattei M.-G. Apte S. Murphy G. Lopez-Otin C. J. Biol. Chem. 1997; 272: 4281-4286Abstract Full Text Full Text PDF PubMed Scopus (180) Google Scholar, 9Yang M. Murray M.T. Kurkinen M. J. Biol. Chem. 1997; 272: 13527-13533Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar).Note Added in ProofWe have now found that the bacteria produced and activated full-length CMMP, and XMMP, cleave native fibrillar type I collagen into the characteristic three-quarter and one-quarter products (data not shown). Degradation and remodeling of the extracellular matrix (ECM) 1The abbreviations used are: ECM, extracellular matrix; EST, expressed sequence tag; FGF, fibroblast growth factor; IL-1, interleukin-1β; TNF, tumor necrosis factor-α; MMP, matrix metalloproteinase; MOPS, 4-morpholinepropanesulfonic acid; MT-MMP, membrane-type MMP; PCR, polymerase chain reaction; TPA, 12-O-tetradecanoylphorbol-13-acetate; bp, base pair(s); kb, kilobase pair(s). 1The abbreviations used are: ECM, extracellular matrix; EST, expressed sequence tag; FGF, fibroblast growth factor; IL-1, interleukin-1β; TNF, tumor necrosis factor-α; MMP, matrix metalloproteinase; MOPS, 4-morpholinepropanesulfonic acid; MT-MMP, membrane-type MMP; PCR, polymerase chain reaction; TPA, 12-O-tetradecanoylphorbol-13-acetate; bp, base pair(s); kb, kilobase pair(s). is thought to play important morphogenic roles during growth and development. ECM degradation is largely controlled by a superfamily of zinc-dependent endopeptidases called matrix metalloproteinases (MMPs). At present, 18 different MMPs have been cloned and characterized (1Woessner Jr., J.F. FASEB J. 1991; 5: 2145-2154Crossref PubMed Scopus (3072) Google Scholar, 2Matrisian L.M. BioEssays. 1992; 6: 121-125Google Scholar, 3Werb Z. Alexander C.M. Kelley W.M. Harris Jr., E.D. Ruddy S. Sledge C.B. Textbook of Rheumatology. 4th Ed. W. B. Saunders Co., Philadelphia1994: 248-268Google Scholar, 4Birkedal-Hansen H. Curr. Opin. Cell Biol. 1995; 7: 728-735Crossref PubMed Scopus (974) Google Scholar, 5Cossins J. Dudgeon T.J. Catlin G. Gearing A.J.H. Clements J.M. Biochem. Biophys. Res. Commun. 1996; 228: 494-498Crossref PubMed Scopus (102) Google Scholar, 6Stolov M.A. Bauzon D.D. Li J. Sedgwick T. Liang V.C.-T. Sang Q.A. Shi Y.-B. Mol. Biol. Cell. 1996; 7: 1471-1483Crossref PubMed Scopus (125) Google Scholar, 7Bartlett J.D. Simmer J.P. Xue J. Margolis H.C. Moreno E.C. Gene ( Amst. ). 1996; 183: 123-128Crossref PubMed Scopus (176) Google Scholar, 8Pendas A.M. Knauper V. Puente X.S. Llano E. Mattei M.-G. Apte S. Murphy G. Lopez-Otin C. J. Biol. Chem. 1997; 272: 4281-4286Abstract Full Text Full Text PDF PubMed Scopus (180) Google Scholar), including a novel MMP that we cloned from the frog Xenopus laevis embryos (9Yang M. Murray M.T. Kurkinen M. J. Biol. Chem. 1997; 272: 13527-13533Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar). MMPs share similar domains with distinct structure and function, have wide and often overlapping substrate specificities, and are usually grouped as collagenases, gelatinases, stromelysins, and membrane-type MMPs. Collagenases are the only enzymes that can cleave the triple helical regions of interstitial fibrillar collagens such as collagen types I, II, and III, the most abundant proteins in the body. The cleavage occurs at one specific peptide bond, Gly775–Ile776 (Leu776 in the α2(I)-chain) in type I collagen and leads to unfolding and denaturation of the fibrillar collagens. Gelatinases A and B, also known as 72- and 92-kDa type IV collagenases, digest denatured collagen (gelatin) and components of basement membranes, a special type of ECM of epithelial, endothelial, fat, muscle, and peripheral nerve cells (10Martin G.R. Timpl R. Kuhn K. Adv. Prot. Chem. 1988; 39: 1-50Crossref PubMed Scopus (114) Google Scholar). Stromelysins are three different MMPs with wide substrate specificity, and stromelysin-1 can degrade almost any ECM component including cartilage proteoglycans (11Bonassar L.J. Frank E.H. Murray J.C. Paguio C.G. Moore V.L. Lark M.W. Sandy J.D. Wu J.J. Eyre D.R. Grodzinsky A.J. Arthritis Rheum. 1995; 38: 173-183Crossref PubMed Scopus (140) Google Scholar). Recently, four new members of the MMP family called membrane-type MMPs (MT-MMPs) were cloned (12Sato H. Takino T. Okada Y. Cao J. Shinagawa A. Yamamoto E. Seiki M. Nature. 1994; 370: 61-65Crossref PubMed Scopus (2365) Google Scholar, 13Okada A. Bellocq J.-P. Royer N. Chenard M.-P. Rio M.-C. Chambon P. Basset P. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 2730-2734Crossref PubMed Scopus (486) Google Scholar, 14Will H. Hinzmann B. Eur. J. Biochem. 1995; 231: 602-608Crossref PubMed Scopus (317) Google Scholar, 15Takino T. Sato H. Shinagawa A. Seiki M. J. Biol. Chem. 1995; 270: 23013-23020Abstract Full Text Full Text PDF PubMed Scopus (447) Google Scholar, 16Puente X.S. Pendas A.M. Liano E. Velasco G. Lopez-Otin C. Cancer Res. 1996; 56: 944-949PubMed Google Scholar, 17Yang M. Hayashi K. Hayashi M. Fujii J.T. Kurkinen M. J. Biol. Chem. 1996; 271: 25548-25554Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar). They are not secreted extracellularly but remain on the cell surface through their carboxyl-terminal transmembrane domain. Recently, however, Matsumoto et al. (18Matsumoto S. Katoh M. Saito S. Watanabe T. Masuho Y. Biochim. Biophys. Acta. 1997; 1354: 159-170Crossref PubMed Scopus (87) Google Scholar) characterized a secreted form of MT3-MMP encoded by an alternatively spliced mRNA. MT-MMPs degrade ECM components, proteolytically cleave and activate 72-kDa type IV collagenase, and therefore may regulate pericellular matrix degradation at the cell surface (19Pei D. Weiss S.J. J. Biol. Chem. 1996; 271: 9135-9140Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 20Cao J. Rehemtulla A. Bahou W. Zucker S. J. Biol. Chem. 1996; 271: 30174-30180Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 21Ohuchi E. Imai K. Fujii Y. Sato H. Seiki M. Okada Y. J. Biol. Chem. 1997; 272: 2446-2451Abstract Full Text Full Text PDF PubMed Scopus (827) Google Scholar). MMPs are produced as inactive precursors, which are activated by proteolytic removal of their amino-terminal domain, a 78–178-residue-long propeptide (22Strongin A.Y. Collier I. Bannikov G. Marmer B.L. Grant G.A. Goldberg G.I. J. Biol. Chem. 1995; 270: 5331-5338Abstract Full Text Full Text PDF PubMed Scopus (1434) Google Scholar, 23Pei D. Weiss S.J. Nature. 1995; 375: 244-247Crossref PubMed Scopus (530) Google Scholar, 24Benbow U. Butticé G. Nagase H. Kurkinen M. J. Biol. Chem. 1996; 271: 10715-10722Abstract Full Text Full Text PDF PubMed Scopus (24) Google Scholar). Thus, it is striking that stromelysin-1 (MMP3) proteolytically activates at least five other members of the MMP family including interstitial collagenase-1 (MMP1), matrilysin (MMP7), neutrophil collagenase-2 (MMP8), 92-kDa type IV collagenase (MMP9), and collagenase-3 (MMP13), suggesting that stromelysin-1 plays a special “upstream” role in ECM degradation and remodeling (25Murphy G. Cockett M.I. Stephens P.E. Smith B.J. Docherty A.J.P. Biochem. J. 1987; 248: 265-268Crossref PubMed Scopus (390) Google Scholar, 26Ogata Y. Enghild J.J. Nagase H. J. Biol. Chem. 1992; 267: 3581-3584Abstract Full Text PDF PubMed Google Scholar, 27Imai K. Yokohama Y. Nakanishi I. Ohuchi E. Fujii Y. Nakai N. Okada Y. J. Biol. Chem. 1995; 270: 6691-6697Abstract Full Text Full Text PDF PubMed Scopus (264) Google Scholar, 28Knauper V. Wilhelm S.M. Seperack P.K. DeClerck Y.A. Langley K.E. Osthues A. Tschesche H. Biochem. J. 1993; 295: 581-586Crossref PubMed Scopus (152) Google Scholar, 29Knauper V. Lopez-Otin C. Smith B. Knight G. Murphy G. J. Biol. Chem. 1996; 271: 1544-1558Abstract Full Text Full Text PDF PubMed Scopus (782) Google Scholar). Recently, Okamoto et al. (30Okamoto T. Akaike T. Suga M. Tanase S. Horie H. Miyajima S. Ando M. Ichinose Y. Maeda H. J. Biol. Chem. 1997; 272: 6059-6066Abstract Full Text Full Text PDF PubMed Scopus (139) Google Scholar) reported that various bacterial proteinases can also activate MMP1, MMP2, and MMP9. MMPs are expressed widely during embryogenesis, often in a highly tissue- and cell-specific pattern, suggesting distinct roles for MMPs in growth and development (17Yang M. Hayashi K. Hayashi M. Fujii J.T. Kurkinen M. J. Biol. Chem. 1996; 271: 25548-25554Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 31Brenner C.A. Adler R.R. Rappolee D.A. Pedersen R.A. Werb Z. Genes Dev. 1989; 3: 848-859Crossref PubMed Scopus (239) Google Scholar, 32Mattot V. Raes M.B. Henriet P. Eeckhout Y. Stehelin D. Vandenbunder B. Desbiens X. J. Cell Sci. 1995; 108: 529-535Crossref PubMed Google Scholar, 33Gack S. Vallon R. Schmidt J. Grigoriadis A. Tuckermann J. Schenkel J. Wiher H. Wagner E.F. Angel P. Cell Growth Differ. 1995; 6: 759-767PubMed Google Scholar, 34Witty J.P. Wright J.H. Matrisian L.M. Mol. Biol. Cell. 1995; 6: 1287-1303Crossref PubMed Scopus (169) Google Scholar, 35Reponen P. Sahlberg C. Munaut C. Thesleff I. Tryggvason K. J. Cell Biol. 1994; 124: 1091-1102Crossref PubMed Scopus (249) Google Scholar, 36Canete-Soler R. Gui Y.-H. Linask K.K. Muschel R.J. Dev. Dyn. 1995; 204: 30-40Crossref PubMed Scopus (54) Google Scholar, 37Sato T. del Carmen Ovejero M. Heegaard A.-M. Kumegawa M. Foged N.T. Delaisse J.-M. J. Cell Sci. 1997; 110: 589-596Crossref PubMed Google Scholar). In adult life, MMPs are rarely expressed except in rapidly remodeling tissues such as the term placenta, menstrual endometrium, and involuting mammary glands and during wound healing and inflammation (38Belaaouaj A. Shipley J.M. Kobayashi D.K. Zimonjic D.B. Popescu N. Silverman G.A. Shapiro S.D. J. Biol. Chem. 1995; 270: 14568-14575Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar, 39Boudreau N. Sympson C.J. Werb Z. Bissell M.J. Science. 1995; 267: 891-893Crossref PubMed Scopus (1113) Google Scholar, 40Kokorine I. Marbaix E. Henriet P. Okada Y. Donnez J. Eeckhout Y. Courtoy P.J. J. Cell Sci. 1996; 109: 2151-21608PubMed Google Scholar, 41Rodgers W.H. Matrisian L.M. Giudice L.L. Dsupin N. Cannon P. Svitek C. Gorstein F. Osteen K.G. J. Clin. Invest. 1994; 94: 946-953Crossref PubMed Scopus (358) Google Scholar, 42Okada A. Tomasetto C. Lutz Y. Bellocq J.-P. Rio M.-C. Basset P. J. Cell Biol. 1997; 137: 67-77Crossref PubMed Scopus (192) Google Scholar). MMPs are also thought to play a critical role in tumor growth and metastasis (43Stetler-Stevenson W.G. Aznavoorian S. Liotta L.A. Annu. Rev. Cell Biol. 1993; 9: 541-573Crossref PubMed Scopus (1515) Google Scholar, 44MacDougall J.R. Matrisian L.M. Cancer Metastasis Rev. 1995; 14: 351-362Crossref PubMed Scopus (400) Google Scholar) and in the progression of other diseases such as arthritis, atherosclerosis, and aneurysm (3Werb Z. Alexander C.M. Kelley W.M. Harris Jr., E.D. Ruddy S. Sledge C.B. Textbook of Rheumatology. 4th Ed. W. B. Saunders Co., Philadelphia1994: 248-268Google Scholar, 45Newman K.M. Ogata Y. Malon A.M. Irizarry E. Gandhi R.H. Nagase H. Tilson M.D. Arterioscler. Thromb. 1994; 14: 1315-1320Crossref PubMed Google Scholar, 46Vincenti M.P. Clark I.M. Brinckerhoff C.E. Arthritis Rheum. 1994; 37: 1115-1126Crossref PubMed Scopus (189) Google Scholar, 47Ye S. Eriksson P. Hamsten A. Kurkinen M. Humphries S.E. Henney A.M. J. Biol. Chem. 1996; 271: 13055-13060Abstract Full Text Full Text PDF PubMed Scopus (438) Google Scholar). To study the role of ECM degradation and remodeling in early vertebrate development, we are cloning MMPs and tissue inhibitors of metalloproteinases from chicken embryos and cultured cells (17Yang M. Hayashi K. Hayashi M. Fujii J.T. Kurkinen M. J. Biol. Chem. 1996; 271: 25548-25554Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar). Here we describe the cloning and characterization of a novel member of the MMP family, called CMMP, from cultured primary chicken embryo fibroblasts. A cDNA-derived CMMP sequence contains 472 amino acids including a putative 19-residue signal peptide and a unique cysteine in the catalytic domain. A homologously placed cysteine is found only inXenopus XMMP and human MMP19, two recently cloned novel MMPs (5Cossins J. Dudgeon T.J. Catlin G. Gearing A.J.H. Clements J.M. Biochem. Biophys. Res. Commun. 1996; 228: 494-498Crossref PubMed Scopus (102) Google Scholar, 8Pendas A.M. Knauper V. Puente X.S. Llano E. Mattei M.-G. Apte S. Murphy G. Lopez-Otin C. J. Biol. Chem. 1997; 272: 4281-4286Abstract Full Text Full Text PDF PubMed Scopus (180) Google Scholar, 9Yang M. Murray M.T. Kurkinen M. J. Biol. Chem. 1997; 272: 13527-13533Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar). Note Added in ProofWe have now found that the bacteria produced and activated full-length CMMP, and XMMP, cleave native fibrillar type I collagen into the characteristic three-quarter and one-quarter products (data not shown). We have now found that the bacteria produced and activated full-length CMMP, and XMMP, cleave native fibrillar type I collagen into the characteristic three-quarter and one-quarter products (data not shown). We thank Michael Hagen for the synthesis of many oligodeoxynucleotides; Amy Sang for the sequence ofXenopus collagenase-4 prior to publication; and Irina Massova, Shahriar Mobashery, Minoru S. H. Ko, and Hideaki Nagase for help and comments on the manuscript. Special thanks are due to Anton Scott Goustin for helpful discussions and for Fig. 4." @default.
- W1982146541 created "2016-06-24" @default.
- W1982146541 creator A5010387478 @default.
- W1982146541 creator A5033357424 @default.
- W1982146541 date "1998-07-01" @default.
- W1982146541 modified "2023-10-11" @default.
- W1982146541 title "Cloning and Characterization of a Novel Matrix Metalloproteinase (MMP), CMMP, from Chicken Embryo Fibroblasts" @default.
- W1982146541 cites W1482195692 @default.
- W1982146541 cites W1496944719 @default.
- W1982146541 cites W1521892157 @default.
- W1982146541 cites W1524239466 @default.
- W1982146541 cites W1589181903 @default.
- W1982146541 cites W1772675489 @default.
- W1982146541 cites W1804633340 @default.
- W1982146541 cites W1951248594 @default.
- W1982146541 cites W1968449757 @default.
- W1982146541 cites W1969179229 @default.
- W1982146541 cites W1977127210 @default.
- W1982146541 cites W1979390430 @default.
- W1982146541 cites W1982996120 @default.
- W1982146541 cites W1987542353 @default.
- W1982146541 cites W1989963027 @default.
- W1982146541 cites W1991063206 @default.
- W1982146541 cites W1994451333 @default.
- W1982146541 cites W1995954197 @default.
- W1982146541 cites W1998549662 @default.
- W1982146541 cites W2005521257 @default.
- W1982146541 cites W2009836750 @default.
- W1982146541 cites W2015359970 @default.
- W1982146541 cites W2020973067 @default.
- W1982146541 cites W2024602261 @default.
- W1982146541 cites W2024876937 @default.
- W1982146541 cites W2028659031 @default.
- W1982146541 cites W2038605297 @default.
- W1982146541 cites W2042142377 @default.
- W1982146541 cites W2043068076 @default.
- W1982146541 cites W2045348184 @default.
- W1982146541 cites W2046202431 @default.
- W1982146541 cites W2048172586 @default.
- W1982146541 cites W2049220062 @default.
- W1982146541 cites W2052626837 @default.
- W1982146541 cites W2055360422 @default.
- W1982146541 cites W2060182573 @default.
- W1982146541 cites W2067369728 @default.
- W1982146541 cites W2069118847 @default.
- W1982146541 cites W2069456989 @default.
- W1982146541 cites W2072653838 @default.
- W1982146541 cites W2078567932 @default.
- W1982146541 cites W2078651686 @default.
- W1982146541 cites W2106577532 @default.
- W1982146541 cites W2109625553 @default.
- W1982146541 cites W2109658199 @default.
- W1982146541 cites W2113625077 @default.
- W1982146541 cites W2115942516 @default.
- W1982146541 cites W2118837944 @default.
- W1982146541 cites W2142731169 @default.
- W1982146541 cites W2143322837 @default.
- W1982146541 cites W2149483446 @default.
- W1982146541 cites W2153188915 @default.
- W1982146541 cites W2158714788 @default.
- W1982146541 cites W2159692814 @default.
- W1982146541 cites W2167709602 @default.
- W1982146541 cites W2336098445 @default.
- W1982146541 cites W2415881300 @default.
- W1982146541 cites W3143448550 @default.
- W1982146541 cites W4240447878 @default.
- W1982146541 cites W4294216491 @default.
- W1982146541 cites W4376567326 @default.
- W1982146541 cites W96091379 @default.
- W1982146541 doi "https://doi.org/10.1074/jbc.273.28.17893" @default.
- W1982146541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9651395" @default.
- W1982146541 hasPublicationYear "1998" @default.
- W1982146541 type Work @default.
- W1982146541 sameAs 1982146541 @default.
- W1982146541 citedByCount "64" @default.
- W1982146541 countsByYear W19821465412012 @default.
- W1982146541 countsByYear W19821465412013 @default.
- W1982146541 countsByYear W19821465412014 @default.
- W1982146541 countsByYear W19821465412015 @default.
- W1982146541 countsByYear W19821465412016 @default.
- W1982146541 countsByYear W19821465412017 @default.
- W1982146541 countsByYear W19821465412018 @default.
- W1982146541 countsByYear W19821465412020 @default.
- W1982146541 countsByYear W19821465412021 @default.
- W1982146541 countsByYear W19821465412022 @default.
- W1982146541 crossrefType "journal-article" @default.
- W1982146541 hasAuthorship W1982146541A5010387478 @default.
- W1982146541 hasAuthorship W1982146541A5033357424 @default.
- W1982146541 hasBestOaLocation W19821465411 @default.
- W1982146541 hasConcept C106487976 @default.
- W1982146541 hasConcept C109523444 @default.
- W1982146541 hasConcept C121050878 @default.
- W1982146541 hasConcept C153911025 @default.
- W1982146541 hasConcept C185592680 @default.
- W1982146541 hasConcept C196843134 @default.
- W1982146541 hasConcept C199360897 @default.
- W1982146541 hasConcept C41008148 @default.
- W1982146541 hasConcept C43617362 @default.