Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989864652> ?p ?o ?g. }
- W1989864652 endingPage "254" @default.
- W1989864652 startingPage "249" @default.
- W1989864652 abstract "It has recently been demonstrated that it was possible to individually trap 70μm droplets flowing within a 500μm wide microfluidic channel by a 24MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments. In this paper, the acoustic trapping force (F(trapping)) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. F(trapping) is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18MHz to 30MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (F(min,trapping)) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (V(in)) to the transducer. At PRF=0.1kHz and DTF=30%, F(min,trapping) is increased from 2.2nN for V(in)=22V(pp) to 3.8nN for V(in)=54V(pp). With a fixed V(in)=54V(pp) and DTF=30%, F(min,trapping) can be varied from 3.8nN at PRF=0.1kHz to 6.7nN at PRF=0.5kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion. The stiffness k can be estimated through linear regression by measuring the trapping force (F(trapping)) corresponding to the displacement (x) of a droplet from the trap center. By plotting F(trapping) - x curves for certain values of V(in) (22/38/54V(pp)) at DTF=10% and PRF=0.1kHz, k is measured to be 0.09, 0.14, and 0.20nN/μm, respectively. With variable PRF from 0.1 to 0.5kHz at V(in)=54 V(pp), k is increased from 0.20 to 0.42nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger F(trapping)) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer's excitation parameters." @default.
- W1989864652 created "2016-06-24" @default.
- W1989864652 creator A5008993410 @default.
- W1989864652 creator A5035827605 @default.
- W1989864652 creator A5075046843 @default.
- W1989864652 date "2013-01-01" @default.
- W1989864652 modified "2023-09-27" @default.
- W1989864652 title "Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect" @default.
- W1989864652 cites W1985607460 @default.
- W1989864652 cites W1993212543 @default.
- W1989864652 cites W2013077656 @default.
- W1989864652 cites W2031883724 @default.
- W1989864652 cites W2039897145 @default.
- W1989864652 cites W2042741881 @default.
- W1989864652 cites W2042804367 @default.
- W1989864652 cites W2049111720 @default.
- W1989864652 cites W2085428559 @default.
- W1989864652 cites W2088329048 @default.
- W1989864652 cites W2102079420 @default.
- W1989864652 cites W2108461844 @default.
- W1989864652 cites W2118477305 @default.
- W1989864652 cites W2128920723 @default.
- W1989864652 cites W2137034111 @default.
- W1989864652 cites W2149320731 @default.
- W1989864652 cites W2170241600 @default.
- W1989864652 cites W4210960748 @default.
- W1989864652 cites W4255219316 @default.
- W1989864652 doi "https://doi.org/10.1016/j.ultras.2012.06.008" @default.
- W1989864652 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3746770" @default.
- W1989864652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22824623" @default.
- W1989864652 hasPublicationYear "2013" @default.
- W1989864652 type Work @default.
- W1989864652 sameAs 1989864652 @default.
- W1989864652 citedByCount "17" @default.
- W1989864652 countsByYear W19898646522013 @default.
- W1989864652 countsByYear W19898646522014 @default.
- W1989864652 countsByYear W19898646522015 @default.
- W1989864652 countsByYear W19898646522016 @default.
- W1989864652 countsByYear W19898646522017 @default.
- W1989864652 countsByYear W19898646522018 @default.
- W1989864652 countsByYear W19898646522019 @default.
- W1989864652 countsByYear W19898646522020 @default.
- W1989864652 countsByYear W19898646522021 @default.
- W1989864652 countsByYear W19898646522022 @default.
- W1989864652 crossrefType "journal-article" @default.
- W1989864652 hasAuthorship W1989864652A5008993410 @default.
- W1989864652 hasAuthorship W1989864652A5035827605 @default.
- W1989864652 hasAuthorship W1989864652A5075046843 @default.
- W1989864652 hasBestOaLocation W19898646522 @default.
- W1989864652 hasConcept C120665830 @default.
- W1989864652 hasConcept C121332964 @default.
- W1989864652 hasConcept C127172972 @default.
- W1989864652 hasConcept C143753070 @default.
- W1989864652 hasConcept C159985019 @default.
- W1989864652 hasConcept C171250308 @default.
- W1989864652 hasConcept C18903297 @default.
- W1989864652 hasConcept C192562407 @default.
- W1989864652 hasConcept C20198109 @default.
- W1989864652 hasConcept C24890656 @default.
- W1989864652 hasConcept C2777924906 @default.
- W1989864652 hasConcept C2781325599 @default.
- W1989864652 hasConcept C2781363786 @default.
- W1989864652 hasConcept C56318395 @default.
- W1989864652 hasConcept C57879066 @default.
- W1989864652 hasConcept C72921944 @default.
- W1989864652 hasConcept C8673954 @default.
- W1989864652 hasConcept C86803240 @default.
- W1989864652 hasConceptScore W1989864652C120665830 @default.
- W1989864652 hasConceptScore W1989864652C121332964 @default.
- W1989864652 hasConceptScore W1989864652C127172972 @default.
- W1989864652 hasConceptScore W1989864652C143753070 @default.
- W1989864652 hasConceptScore W1989864652C159985019 @default.
- W1989864652 hasConceptScore W1989864652C171250308 @default.
- W1989864652 hasConceptScore W1989864652C18903297 @default.
- W1989864652 hasConceptScore W1989864652C192562407 @default.
- W1989864652 hasConceptScore W1989864652C20198109 @default.
- W1989864652 hasConceptScore W1989864652C24890656 @default.
- W1989864652 hasConceptScore W1989864652C2777924906 @default.
- W1989864652 hasConceptScore W1989864652C2781325599 @default.
- W1989864652 hasConceptScore W1989864652C2781363786 @default.
- W1989864652 hasConceptScore W1989864652C56318395 @default.
- W1989864652 hasConceptScore W1989864652C57879066 @default.
- W1989864652 hasConceptScore W1989864652C72921944 @default.
- W1989864652 hasConceptScore W1989864652C8673954 @default.
- W1989864652 hasConceptScore W1989864652C86803240 @default.
- W1989864652 hasIssue "1" @default.
- W1989864652 hasLocation W19898646521 @default.
- W1989864652 hasLocation W19898646522 @default.
- W1989864652 hasLocation W19898646523 @default.
- W1989864652 hasLocation W19898646524 @default.
- W1989864652 hasOpenAccess W1989864652 @default.
- W1989864652 hasPrimaryLocation W19898646521 @default.
- W1989864652 hasRelatedWork W2006525119 @default.
- W1989864652 hasRelatedWork W2040019412 @default.
- W1989864652 hasRelatedWork W2079236187 @default.
- W1989864652 hasRelatedWork W2089391798 @default.
- W1989864652 hasRelatedWork W2095628434 @default.
- W1989864652 hasRelatedWork W2557148751 @default.