Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990243296> ?p ?o ?g. }
- W1990243296 endingPage "100" @default.
- W1990243296 startingPage "94" @default.
- W1990243296 abstract "In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit unusual deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging." @default.
- W1990243296 created "2016-06-24" @default.
- W1990243296 creator A5009967306 @default.
- W1990243296 creator A5038339911 @default.
- W1990243296 creator A5040215906 @default.
- W1990243296 creator A5047087327 @default.
- W1990243296 date "2015-04-01" @default.
- W1990243296 modified "2023-10-14" @default.
- W1990243296 title "In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals" @default.
- W1990243296 cites W1666813058 @default.
- W1990243296 cites W1876297499 @default.
- W1990243296 cites W1969718761 @default.
- W1990243296 cites W1975102277 @default.
- W1990243296 cites W1982528737 @default.
- W1990243296 cites W1989462711 @default.
- W1990243296 cites W1991552890 @default.
- W1990243296 cites W1992131384 @default.
- W1990243296 cites W1999938229 @default.
- W1990243296 cites W2000148778 @default.
- W1990243296 cites W2010118235 @default.
- W1990243296 cites W2010237404 @default.
- W1990243296 cites W2020705627 @default.
- W1990243296 cites W2024401209 @default.
- W1990243296 cites W2028174043 @default.
- W1990243296 cites W2028496098 @default.
- W1990243296 cites W2037852298 @default.
- W1990243296 cites W2045689619 @default.
- W1990243296 cites W2047965006 @default.
- W1990243296 cites W2051633849 @default.
- W1990243296 cites W2055302323 @default.
- W1990243296 cites W2055530416 @default.
- W1990243296 cites W2058572326 @default.
- W1990243296 cites W2060745895 @default.
- W1990243296 cites W2061013519 @default.
- W1990243296 cites W2066551643 @default.
- W1990243296 cites W2073473478 @default.
- W1990243296 cites W2075747877 @default.
- W1990243296 cites W2080099522 @default.
- W1990243296 cites W2081404344 @default.
- W1990243296 cites W2082730101 @default.
- W1990243296 cites W2084271911 @default.
- W1990243296 cites W2087913952 @default.
- W1990243296 cites W2089771230 @default.
- W1990243296 cites W2094818644 @default.
- W1990243296 cites W2103599932 @default.
- W1990243296 cites W2115023114 @default.
- W1990243296 cites W2129831264 @default.
- W1990243296 cites W2142755293 @default.
- W1990243296 cites W2157900895 @default.
- W1990243296 cites W2158494720 @default.
- W1990243296 cites W2159637144 @default.
- W1990243296 cites W2162532420 @default.
- W1990243296 cites W2317838033 @default.
- W1990243296 cites W2331339458 @default.
- W1990243296 cites W4211105458 @default.
- W1990243296 doi "https://doi.org/10.1016/j.ultramic.2014.11.035" @default.
- W1990243296 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25576291" @default.
- W1990243296 hasPublicationYear "2015" @default.
- W1990243296 type Work @default.
- W1990243296 sameAs 1990243296 @default.
- W1990243296 citedByCount "24" @default.
- W1990243296 countsByYear W19902432962016 @default.
- W1990243296 countsByYear W19902432962017 @default.
- W1990243296 countsByYear W19902432962018 @default.
- W1990243296 countsByYear W19902432962019 @default.
- W1990243296 countsByYear W19902432962020 @default.
- W1990243296 countsByYear W19902432962021 @default.
- W1990243296 countsByYear W19902432962022 @default.
- W1990243296 countsByYear W19902432962023 @default.
- W1990243296 crossrefType "journal-article" @default.
- W1990243296 hasAuthorship W1990243296A5009967306 @default.
- W1990243296 hasAuthorship W1990243296A5038339911 @default.
- W1990243296 hasAuthorship W1990243296A5040215906 @default.
- W1990243296 hasAuthorship W1990243296A5047087327 @default.
- W1990243296 hasBestOaLocation W19902432961 @default.
- W1990243296 hasConcept C121332964 @default.
- W1990243296 hasConcept C137637335 @default.
- W1990243296 hasConcept C146088050 @default.
- W1990243296 hasConcept C159122135 @default.
- W1990243296 hasConcept C159985019 @default.
- W1990243296 hasConcept C171250308 @default.
- W1990243296 hasConcept C175854130 @default.
- W1990243296 hasConcept C185592680 @default.
- W1990243296 hasConcept C191897082 @default.
- W1990243296 hasConcept C192191005 @default.
- W1990243296 hasConcept C192562407 @default.
- W1990243296 hasConcept C204366326 @default.
- W1990243296 hasConcept C205539056 @default.
- W1990243296 hasConcept C41234517 @default.
- W1990243296 hasConcept C47908070 @default.
- W1990243296 hasConcept C62520636 @default.
- W1990243296 hasConcept C66823137 @default.
- W1990243296 hasConcept C74214498 @default.
- W1990243296 hasConcept C79186407 @default.
- W1990243296 hasConcept C8010536 @default.
- W1990243296 hasConcept C87976508 @default.
- W1990243296 hasConceptScore W1990243296C121332964 @default.
- W1990243296 hasConceptScore W1990243296C137637335 @default.