Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011180679> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2011180679 endingPage "12" @default.
- W2011180679 startingPage "1" @default.
- W2011180679 abstract "A majority dominating function on the vertex set of a graph G =( V , E ) is a function g : V →{1,−1} such that g ( N [ v ])⩾1 for at least half of the vertices v in V. The weight of a majority dominating function is denoted as g ( V ) and is ∑ g(v) over all v in V. The majority domination number of a graph is the minimum possible weight of a majority dominating function, and is denoted as γ maj ( G ). We determine the majority domination numbers of certain families of graphs. Moreover, we show that the decision problem corresponding to computing the majority domination number of an arbitrary disjoint union of complete graphs is NP-complete." @default.
- W2011180679 created "2016-06-24" @default.
- W2011180679 creator A5088383017 @default.
- W2011180679 date "2001-08-01" @default.
- W2011180679 modified "2023-09-26" @default.
- W2011180679 title "On majority domination in graphs" @default.
- W2011180679 cites W1988476357 @default.
- W2011180679 cites W1995135963 @default.
- W2011180679 cites W2011039300 @default.
- W2011180679 cites W201783092 @default.
- W2011180679 cites W2021308184 @default.
- W2011180679 cites W2038457140 @default.
- W2011180679 cites W62329699 @default.
- W2011180679 doi "https://doi.org/10.1016/s0012-365x(00)00370-8" @default.
- W2011180679 hasPublicationYear "2001" @default.
- W2011180679 type Work @default.
- W2011180679 sameAs 2011180679 @default.
- W2011180679 citedByCount "11" @default.
- W2011180679 countsByYear W20111806792016 @default.
- W2011180679 countsByYear W20111806792018 @default.
- W2011180679 countsByYear W20111806792020 @default.
- W2011180679 countsByYear W20111806792022 @default.
- W2011180679 countsByYear W20111806792023 @default.
- W2011180679 crossrefType "journal-article" @default.
- W2011180679 hasAuthorship W2011180679A5088383017 @default.
- W2011180679 hasBestOaLocation W20111806791 @default.
- W2011180679 hasConcept C114614502 @default.
- W2011180679 hasConcept C118615104 @default.
- W2011180679 hasConcept C132525143 @default.
- W2011180679 hasConcept C146661039 @default.
- W2011180679 hasConcept C33923547 @default.
- W2011180679 hasConcept C80899671 @default.
- W2011180679 hasConcept C83833204 @default.
- W2011180679 hasConceptScore W2011180679C114614502 @default.
- W2011180679 hasConceptScore W2011180679C118615104 @default.
- W2011180679 hasConceptScore W2011180679C132525143 @default.
- W2011180679 hasConceptScore W2011180679C146661039 @default.
- W2011180679 hasConceptScore W2011180679C33923547 @default.
- W2011180679 hasConceptScore W2011180679C80899671 @default.
- W2011180679 hasConceptScore W2011180679C83833204 @default.
- W2011180679 hasIssue "1-3" @default.
- W2011180679 hasLocation W20111806791 @default.
- W2011180679 hasOpenAccess W2011180679 @default.
- W2011180679 hasPrimaryLocation W20111806791 @default.
- W2011180679 hasRelatedWork W2010333092 @default.
- W2011180679 hasRelatedWork W2015983146 @default.
- W2011180679 hasRelatedWork W2023454821 @default.
- W2011180679 hasRelatedWork W2024094529 @default.
- W2011180679 hasRelatedWork W2073028422 @default.
- W2011180679 hasRelatedWork W2099431244 @default.
- W2011180679 hasRelatedWork W2741772349 @default.
- W2011180679 hasRelatedWork W2762120601 @default.
- W2011180679 hasRelatedWork W2914463139 @default.
- W2011180679 hasRelatedWork W2555480942 @default.
- W2011180679 hasVolume "239" @default.
- W2011180679 isParatext "false" @default.
- W2011180679 isRetracted "false" @default.
- W2011180679 magId "2011180679" @default.
- W2011180679 workType "article" @default.