Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017013448> ?p ?o ?g. }
- W2017013448 abstract "[1] Penetrative convection is discussed where the instability is driven by radiative heating of water below the temperature of maximum density. Convection of this type occurs in ice-covered freshwater lakes in late spring, when the snow cover vanishes and solar radiation is absorbed beneath the ice cover. The vertical temperature structure, bulk mixed layer scaling, and mixed layer deepening are examined for a number of temperate and polar lakes. A bulk mixed layer scaling for this type of convection is based on energy arguments underlying the classical Deardorff convective scaling. The depth of the convective layer serves as an appropriate length scale. However, a modified scale that takes account of the energetics of a distributed radiation source term replaces the surface buoyancy flux velocity scale used by Deardorff. The scaling compares favorably with large-eddy simulations of turbulence kinetic energy (TKE) and with both observations and large-eddy simulations of the TKE dissipation rate. Mixed layer deepening is simulated with a model of convection beneath lake ice. The model describes the structure of the stably stratified layer just beneath the ice with a stationary solution to the heat transfer equation; the structure of the entrainment layer is parameterized with a zero-order jump approach. The entrainment equation is derived from the mixed layer TKE budget and bulk mixed layer scaling. Entrainment regimes characteristic of convection beneath ice are analyzed. It is shown that if the Deardorff convective velocity scale is replaced with a scale incorporating the distributed buoyancy flux, the entrainment equation describing atmospheric and oceanic convective boundary layers also applies beneath the ice. Model predictions compare well with data from observations in a number of lakes. We propose and compare with observations an extension of the mixed layer model that allows for the inclusion of salinity. Although the salt concentration is low in most temperate and polar lakes, its dynamical effect can be significant close to the temperature of maximum density." @default.
- W2017013448 created "2016-06-24" @default.
- W2017013448 creator A5017626692 @default.
- W2017013448 creator A5024758461 @default.
- W2017013448 creator A5028321902 @default.
- W2017013448 creator A5041013168 @default.
- W2017013448 creator A5088323296 @default.
- W2017013448 creator A5091132102 @default.
- W2017013448 date "2002-01-01" @default.
- W2017013448 modified "2023-10-11" @default.
- W2017013448 title "Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model" @default.
- W2017013448 cites W181683055 @default.
- W2017013448 cites W1966536410 @default.
- W2017013448 cites W1976088541 @default.
- W2017013448 cites W1985943387 @default.
- W2017013448 cites W1989732094 @default.
- W2017013448 cites W2000379489 @default.
- W2017013448 cites W2000561971 @default.
- W2017013448 cites W2003909195 @default.
- W2017013448 cites W2004347584 @default.
- W2017013448 cites W2018457947 @default.
- W2017013448 cites W2021165458 @default.
- W2017013448 cites W2028620589 @default.
- W2017013448 cites W2038197875 @default.
- W2017013448 cites W2044233272 @default.
- W2017013448 cites W2044277769 @default.
- W2017013448 cites W2045366667 @default.
- W2017013448 cites W2051295969 @default.
- W2017013448 cites W2053948805 @default.
- W2017013448 cites W2061999911 @default.
- W2017013448 cites W2064127553 @default.
- W2017013448 cites W2064686777 @default.
- W2017013448 cites W2066968941 @default.
- W2017013448 cites W2071228004 @default.
- W2017013448 cites W2074856610 @default.
- W2017013448 cites W2083647041 @default.
- W2017013448 cites W2085001876 @default.
- W2017013448 cites W2087789854 @default.
- W2017013448 cites W2087991488 @default.
- W2017013448 cites W2091283816 @default.
- W2017013448 cites W2092501116 @default.
- W2017013448 cites W2101312045 @default.
- W2017013448 cites W2106751699 @default.
- W2017013448 cites W2112366292 @default.
- W2017013448 cites W2116174490 @default.
- W2017013448 cites W2118648278 @default.
- W2017013448 cites W2141883520 @default.
- W2017013448 cites W2147763048 @default.
- W2017013448 cites W2156262730 @default.
- W2017013448 cites W2166470235 @default.
- W2017013448 cites W2168606648 @default.
- W2017013448 cites W2169531032 @default.
- W2017013448 cites W2179285023 @default.
- W2017013448 cites W2804070886 @default.
- W2017013448 cites W4214717236 @default.
- W2017013448 cites W4233690529 @default.
- W2017013448 doi "https://doi.org/10.1029/2001jc000892" @default.
- W2017013448 hasPublicationYear "2002" @default.
- W2017013448 type Work @default.
- W2017013448 sameAs 2017013448 @default.
- W2017013448 citedByCount "78" @default.
- W2017013448 countsByYear W20170134482012 @default.
- W2017013448 countsByYear W20170134482013 @default.
- W2017013448 countsByYear W20170134482014 @default.
- W2017013448 countsByYear W20170134482015 @default.
- W2017013448 countsByYear W20170134482016 @default.
- W2017013448 countsByYear W20170134482017 @default.
- W2017013448 countsByYear W20170134482018 @default.
- W2017013448 countsByYear W20170134482019 @default.
- W2017013448 countsByYear W20170134482020 @default.
- W2017013448 countsByYear W20170134482021 @default.
- W2017013448 countsByYear W20170134482022 @default.
- W2017013448 countsByYear W20170134482023 @default.
- W2017013448 crossrefType "journal-article" @default.
- W2017013448 hasAuthorship W2017013448A5017626692 @default.
- W2017013448 hasAuthorship W2017013448A5024758461 @default.
- W2017013448 hasAuthorship W2017013448A5028321902 @default.
- W2017013448 hasAuthorship W2017013448A5041013168 @default.
- W2017013448 hasAuthorship W2017013448A5088323296 @default.
- W2017013448 hasAuthorship W2017013448A5091132102 @default.
- W2017013448 hasBestOaLocation W20170134481 @default.
- W2017013448 hasConcept C10899652 @default.
- W2017013448 hasConcept C121332964 @default.
- W2017013448 hasConcept C122120755 @default.
- W2017013448 hasConcept C127313418 @default.
- W2017013448 hasConcept C135343436 @default.
- W2017013448 hasConcept C139992725 @default.
- W2017013448 hasConcept C153294291 @default.
- W2017013448 hasConcept C15908118 @default.
- W2017013448 hasConcept C194171494 @default.
- W2017013448 hasConcept C24890656 @default.
- W2017013448 hasConcept C538625479 @default.
- W2017013448 hasConcept C57879066 @default.
- W2017013448 hasConcept C91586092 @default.
- W2017013448 hasConceptScore W2017013448C10899652 @default.
- W2017013448 hasConceptScore W2017013448C121332964 @default.
- W2017013448 hasConceptScore W2017013448C122120755 @default.
- W2017013448 hasConceptScore W2017013448C127313418 @default.
- W2017013448 hasConceptScore W2017013448C135343436 @default.
- W2017013448 hasConceptScore W2017013448C139992725 @default.