Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019217670> ?p ?o ?g. }
- W2019217670 endingPage "5961" @default.
- W2019217670 startingPage "5947" @default.
- W2019217670 abstract "In this paper, the numerical investigation of natural convection in a porous trapezoidal enclosures has been performed for uniformly or non-uniformly heated bottom wall. Penalty finite element analysis with bi-quadratic elements is used for solving the Navier–Stokes and energy balance equations. The numerical solutions are studied in terms of streamlines, isotherms, heatlines, local and average Nusselt numbers for a wide range of parameters Da(10−5–10−3), Pr(0.015–1000) and Ra(Ra = 103–106). At low Darcy number (Da = 10−5), heat transfer is primarily due to conduction for all φ’s as seen from the heatlines which are normal to the isotherms. As Da increases to 10−4, convection is initiated and the thermal mixing has been observed at the central regime for all φ’s. Distribution of heatlines illustrate that most of the heat transport for high Darcy number (Da = 10−3) occurs from hot bottom wall to the top portion of cold side walls. It has been found that secondary circulations appear at the top corners of the cavity for φ = 45°, 60° and bottom corners of the cavity for φ = 90° with Pr = 0.015, Da = 10−3 and Ra = 106. The physical interpretation of local and average Nusselt numbers are illustrated using heatlines. For uniformly heated bottom wall with cold side walls, Nub values are maximum near the corners of bottom wall for all φ’s irrespective to Da and Pr. In contrast, for non-uniformly heated bottom wall, the local Nusselt number (Nub) is found to be minimum near the corners of bottom wall and that is also found to be a sinusoidal variation with distance at high Da for all angles (φ). The Nus distribution is similar in both cases along the side wall except near the junction of hot and cold wall for all φ’s. Overall, heat transfer analysis for bottom and side walls is presented in terms of average Nusselt numbers (Nub¯,Nus¯). The critical Ra numbers corresponding to the onset of convection are obtained at Da = 10−3 for Pr(0.015–1000). For Da = 10−3, average Nusselt numbers (Nub¯ and Nus¯) increase exponentially beyond the critical Ra. Overall, the heat transfer rate is large for square cavity (φ = 90°) compared to other angles (φ) irrespective of heating patterns." @default.
- W2019217670 created "2016-06-24" @default.
- W2019217670 creator A5031421820 @default.
- W2019217670 creator A5046453069 @default.
- W2019217670 creator A5072901336 @default.
- W2019217670 creator A5075609787 @default.
- W2019217670 date "2010-12-01" @default.
- W2019217670 modified "2023-10-18" @default.
- W2019217670 title "Analysis of heatlines for natural convection within porous trapezoidal enclosures: Effect of uniform and non-uniform heating of bottom wall" @default.
- W2019217670 cites W1968837738 @default.
- W2019217670 cites W1969597714 @default.
- W2019217670 cites W1972048645 @default.
- W2019217670 cites W1972987892 @default.
- W2019217670 cites W1974110059 @default.
- W2019217670 cites W1975552212 @default.
- W2019217670 cites W1976673811 @default.
- W2019217670 cites W1978424434 @default.
- W2019217670 cites W1980010882 @default.
- W2019217670 cites W1995537862 @default.
- W2019217670 cites W2003123619 @default.
- W2019217670 cites W2016737803 @default.
- W2019217670 cites W2020173235 @default.
- W2019217670 cites W2021863414 @default.
- W2019217670 cites W2024931435 @default.
- W2019217670 cites W2026216602 @default.
- W2019217670 cites W2031635132 @default.
- W2019217670 cites W2042093697 @default.
- W2019217670 cites W2042872696 @default.
- W2019217670 cites W2044039877 @default.
- W2019217670 cites W2053838223 @default.
- W2019217670 cites W2053898214 @default.
- W2019217670 cites W2057442302 @default.
- W2019217670 cites W2059665700 @default.
- W2019217670 cites W2060283935 @default.
- W2019217670 cites W2062809840 @default.
- W2019217670 cites W2068125037 @default.
- W2019217670 cites W2072858172 @default.
- W2019217670 cites W2079511027 @default.
- W2019217670 cites W2079829319 @default.
- W2019217670 cites W2091307688 @default.
- W2019217670 cites W2091383674 @default.
- W2019217670 cites W2096478418 @default.
- W2019217670 cites W2106238488 @default.
- W2019217670 cites W2150395657 @default.
- W2019217670 cites W2437294427 @default.
- W2019217670 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.026" @default.
- W2019217670 hasPublicationYear "2010" @default.
- W2019217670 type Work @default.
- W2019217670 sameAs 2019217670 @default.
- W2019217670 citedByCount "49" @default.
- W2019217670 countsByYear W20192176702012 @default.
- W2019217670 countsByYear W20192176702013 @default.
- W2019217670 countsByYear W20192176702014 @default.
- W2019217670 countsByYear W20192176702015 @default.
- W2019217670 countsByYear W20192176702016 @default.
- W2019217670 countsByYear W20192176702017 @default.
- W2019217670 countsByYear W20192176702018 @default.
- W2019217670 countsByYear W20192176702019 @default.
- W2019217670 countsByYear W20192176702020 @default.
- W2019217670 countsByYear W20192176702021 @default.
- W2019217670 countsByYear W20192176702022 @default.
- W2019217670 countsByYear W20192176702023 @default.
- W2019217670 crossrefType "journal-article" @default.
- W2019217670 hasAuthorship W2019217670A5031421820 @default.
- W2019217670 hasAuthorship W2019217670A5046453069 @default.
- W2019217670 hasAuthorship W2019217670A5072901336 @default.
- W2019217670 hasAuthorship W2019217670A5075609787 @default.
- W2019217670 hasConcept C105569014 @default.
- W2019217670 hasConcept C106836276 @default.
- W2019217670 hasConcept C10899652 @default.
- W2019217670 hasConcept C121332964 @default.
- W2019217670 hasConcept C127313418 @default.
- W2019217670 hasConcept C130230704 @default.
- W2019217670 hasConcept C151730666 @default.
- W2019217670 hasConcept C159985019 @default.
- W2019217670 hasConcept C172100665 @default.
- W2019217670 hasConcept C182748727 @default.
- W2019217670 hasConcept C183447037 @default.
- W2019217670 hasConcept C192562407 @default.
- W2019217670 hasConcept C196558001 @default.
- W2019217670 hasConcept C2779343474 @default.
- W2019217670 hasConcept C2779459783 @default.
- W2019217670 hasConcept C50517652 @default.
- W2019217670 hasConcept C54791560 @default.
- W2019217670 hasConcept C57879066 @default.
- W2019217670 hasConcept C60439489 @default.
- W2019217670 hasConcept C6648577 @default.
- W2019217670 hasConcept C97355855 @default.
- W2019217670 hasConceptScore W2019217670C105569014 @default.
- W2019217670 hasConceptScore W2019217670C106836276 @default.
- W2019217670 hasConceptScore W2019217670C10899652 @default.
- W2019217670 hasConceptScore W2019217670C121332964 @default.
- W2019217670 hasConceptScore W2019217670C127313418 @default.
- W2019217670 hasConceptScore W2019217670C130230704 @default.
- W2019217670 hasConceptScore W2019217670C151730666 @default.
- W2019217670 hasConceptScore W2019217670C159985019 @default.
- W2019217670 hasConceptScore W2019217670C172100665 @default.
- W2019217670 hasConceptScore W2019217670C182748727 @default.