Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050897245> ?p ?o ?g. }
- W2050897245 endingPage "365" @default.
- W2050897245 startingPage "352" @default.
- W2050897245 abstract "There are two common designs for association mapping of complex diseases: case-control and family-based designs. A case-control sample is more powerful to detect genetic effects than a family-based sample that contains the same numbers of affected and unaffected persons, although additional markers may be required to control for spurious association. When family and unrelated samples are available, statistical analyses are often performed in the family and unrelated samples separately, conditioning on parental information for the former, thus resulting in reduced power. In this report, we propose a unified approach that can incorporate both family and case-control samples and, provided the additional markers are available, at the same time corrects for population stratification. We apply the principal components of a marker matrix to adjust for the effect of population stratification. This unified approach makes it unnecessary to perform a conditional analysis of the family data and is more powerful than the separate analyses of unrelated and family samples, or a meta-analysis performed by combining the results of the usual separate analyses. This property is demonstrated in both a variety of simulation models and empirical data. The proposed approach can be equally applied to the analysis of both qualitative and quantitative traits. There are two common designs for association mapping of complex diseases: case-control and family-based designs. A case-control sample is more powerful to detect genetic effects than a family-based sample that contains the same numbers of affected and unaffected persons, although additional markers may be required to control for spurious association. When family and unrelated samples are available, statistical analyses are often performed in the family and unrelated samples separately, conditioning on parental information for the former, thus resulting in reduced power. In this report, we propose a unified approach that can incorporate both family and case-control samples and, provided the additional markers are available, at the same time corrects for population stratification. We apply the principal components of a marker matrix to adjust for the effect of population stratification. This unified approach makes it unnecessary to perform a conditional analysis of the family data and is more powerful than the separate analyses of unrelated and family samples, or a meta-analysis performed by combining the results of the usual separate analyses. This property is demonstrated in both a variety of simulation models and empirical data. The proposed approach can be equally applied to the analysis of both qualitative and quantitative traits." @default.
- W2050897245 created "2016-06-24" @default.
- W2050897245 creator A5007766399 @default.
- W2050897245 creator A5008471831 @default.
- W2050897245 creator A5033647506 @default.
- W2050897245 creator A5063376287 @default.
- W2050897245 date "2008-02-01" @default.
- W2050897245 modified "2023-10-03" @default.
- W2050897245 title "A Unified Association Analysis Approach for Family and Unrelated Samples Correcting for Stratification" @default.
- W2050897245 cites W1551600243 @default.
- W2050897245 cites W1903712632 @default.
- W2050897245 cites W1968830266 @default.
- W2050897245 cites W1977945634 @default.
- W2050897245 cites W1986265706 @default.
- W2050897245 cites W1999597013 @default.
- W2050897245 cites W2001115778 @default.
- W2050897245 cites W2002835979 @default.
- W2050897245 cites W2006158505 @default.
- W2050897245 cites W2006871090 @default.
- W2050897245 cites W2008047653 @default.
- W2050897245 cites W2009766041 @default.
- W2050897245 cites W2014056794 @default.
- W2050897245 cites W2025155191 @default.
- W2050897245 cites W2028857929 @default.
- W2050897245 cites W2042103448 @default.
- W2050897245 cites W2043560340 @default.
- W2050897245 cites W2045985695 @default.
- W2050897245 cites W2058828922 @default.
- W2050897245 cites W2066669827 @default.
- W2050897245 cites W2068666435 @default.
- W2050897245 cites W2069776584 @default.
- W2050897245 cites W2076592280 @default.
- W2050897245 cites W2101791172 @default.
- W2050897245 cites W2108169091 @default.
- W2050897245 cites W2108214367 @default.
- W2050897245 cites W2116329478 @default.
- W2050897245 cites W2116777908 @default.
- W2050897245 cites W2123466824 @default.
- W2050897245 cites W2129348489 @default.
- W2050897245 cites W2134036574 @default.
- W2050897245 cites W2134070988 @default.
- W2050897245 cites W2139376627 @default.
- W2050897245 cites W2142979316 @default.
- W2050897245 cites W2144265893 @default.
- W2050897245 cites W2145185240 @default.
- W2050897245 cites W2146211420 @default.
- W2050897245 cites W2153622221 @default.
- W2050897245 cites W2157752701 @default.
- W2050897245 cites W2158489424 @default.
- W2050897245 cites W2165302044 @default.
- W2050897245 cites W2169556112 @default.
- W2050897245 cites W2217809488 @default.
- W2050897245 doi "https://doi.org/10.1016/j.ajhg.2007.10.009" @default.
- W2050897245 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2427300" @default.
- W2050897245 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18252216" @default.
- W2050897245 hasPublicationYear "2008" @default.
- W2050897245 type Work @default.
- W2050897245 sameAs 2050897245 @default.
- W2050897245 citedByCount "125" @default.
- W2050897245 countsByYear W20508972452012 @default.
- W2050897245 countsByYear W20508972452013 @default.
- W2050897245 countsByYear W20508972452014 @default.
- W2050897245 countsByYear W20508972452015 @default.
- W2050897245 countsByYear W20508972452016 @default.
- W2050897245 countsByYear W20508972452017 @default.
- W2050897245 countsByYear W20508972452018 @default.
- W2050897245 countsByYear W20508972452019 @default.
- W2050897245 countsByYear W20508972452020 @default.
- W2050897245 countsByYear W20508972452021 @default.
- W2050897245 countsByYear W20508972452022 @default.
- W2050897245 countsByYear W20508972452023 @default.
- W2050897245 crossrefType "journal-article" @default.
- W2050897245 hasAuthorship W2050897245A5007766399 @default.
- W2050897245 hasAuthorship W2050897245A5008471831 @default.
- W2050897245 hasAuthorship W2050897245A5033647506 @default.
- W2050897245 hasAuthorship W2050897245A5063376287 @default.
- W2050897245 hasBestOaLocation W20508972451 @default.
- W2050897245 hasConcept C104317684 @default.
- W2050897245 hasConcept C105795698 @default.
- W2050897245 hasConcept C129848803 @default.
- W2050897245 hasConcept C135763542 @default.
- W2050897245 hasConcept C142853389 @default.
- W2050897245 hasConcept C153209595 @default.
- W2050897245 hasConcept C15744967 @default.
- W2050897245 hasConcept C166976648 @default.
- W2050897245 hasConcept C185592680 @default.
- W2050897245 hasConcept C186413461 @default.
- W2050897245 hasConcept C198531522 @default.
- W2050897245 hasConcept C27438332 @default.
- W2050897245 hasConcept C2908647359 @default.
- W2050897245 hasConcept C33923547 @default.
- W2050897245 hasConcept C40696583 @default.
- W2050897245 hasConcept C41008148 @default.
- W2050897245 hasConcept C43617362 @default.
- W2050897245 hasConcept C542102704 @default.
- W2050897245 hasConcept C54355233 @default.
- W2050897245 hasConcept C71924100 @default.
- W2050897245 hasConcept C86803240 @default.