Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066885836> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2066885836 endingPage "563" @default.
- W2066885836 startingPage "561" @default.
- W2066885836 abstract "Several high-density lipoprotein (HDL)-associated proteins are present in a clot prepared from plasma, suggesting that HDL particles are bound to fibrin 1. Proteomic studies with purified HDL reveal up to 75 HDL-associated proteins that are involved in processes such as lipid metabolism, hemostasis, protease inhibition, the immune system and the complement system 2, 3. These proteins are differentially distributed over HDL subspecies that vary in size and composition 4, 5. The diverse biological functions described for HDL 6 may be mediated by the distinct HDL subspecies with their specific associated proteins. Low plasma levels of HDL are a risk factor for arterial and venous thrombosis 7-9 and thrombosis patients could have a low quantity of HDL-associated proteins in their thrombi 10. As it is not yet clear how HDL affects hemostasis and thrombosis, the aim of this study was to further investigate this function of HDL. The role of HDL in reverse cholesterol transport is regarded as the most important function that contributes to the negative association between HDL level and arterial thrombosis. However, HDL has additional properties, including anti-oxidant properties, anti-inflammatory properties, anticoagulant properties and favorable effects on endothelial function 6. HDL is thought to be anticoagulant by acting as a cofactor for the activated protein C pathway together with protein S 11. Another mechanism by which HDL could be anticoagulant is that phosphatidyl serine loses its procoagulant properties when incorporated into HDL particles, because the surface area of HDL is too small to accommodate the prothrombinase complex 12. The possible function of HDL in coagulation and fibrinolysis was investigated by thromboelastography using ROTEM® analysis with tissue factor. Additional methodological details and results are provided as online supplementary information. We added different amounts (1–8 mg mL−1) of commercially available HDL (comHDL) to citrated blood of healthy volunteers. Figure 1(A) shows a typical ROTEM® curve in the absence and presence of 4 mg mL−1 comHDL. There was no effect of comHDL on the coagulation parameters (Fig. 1B). The maximum clot firmness (MCF, Fig. 1C) and the amplitude at 30 min, 45 min and 60 min (Fig. 1D) were decreased in the presence of 4 mg mL−1 comHDL (n = 8), indicating decreased blood clot firmness and apparent lysis. The decrease in clot firmness and the apparent lysis were concentration dependent (data not shown). Thromboelastography analysis of whole blood from eight healthy subjects in the absence and presence of 4 mg mL −11 comHDL. (A) A typical thromboelastogram from whole blood with added comHDL (4 mg mL −11) or 150 mM NaCl/0.2 mM EDTA, pH 7.4 as control. (B) The mean (± SD) clotting time (CT) and clot formation time (CFT). (C) The mean (± SD) maximum clot firmness (MCF). (D) The mean (± SD) amplitude at 30 min, 45 min and 60 min. The P-value indicates the significance of the difference with the control at the same time-point. The data presented in Fig. 1 were obtained with one batch of comHDL. When we tested more batches, not every batch of comHDL had a similar effect on the clot firmness. SDS-PAGE analysis of two comHDL batches that showed an effect on clot firmness and two batches that did not show any effect on clot firmness using ROTEM® analysis revealed that the effect was correlated with a shift of the apolipoprotein AI protein band around 25 kDa and an apparent smear in the gels above apolipoprotein AI (Fig. S1A). This smear on SDS-PAGE of comHDL was similar to the smear of oxidized HDL (oxHDL) that was prepared from native HDL (nHDL) isolated in-house (Fig. S1B). We also investigated the effect of nHDL and oxHDL on clot firmness using ROTEM® analysis. The clot firmness reduced during the thromboelastography by the addition of oxHDL, but not by nHDL. The mean amplitude (± SD) at 30 min, at 45 min, and at 60 min was decreased from 100 (± 0)%, 96 (± 2)% and 91 (± 3)% to 63 (± 25)%, 51 (± 24)% and 45 (± 24)%, respectively (P < 0.01), by the addition of 4 mg mL−1 oxHDL (Fig. S2A). This decrease in clot firmness was specific for oxHDL because oxLDL did not show any effect (Fig. S2B). The effect on clot firmness was not inhibited by ε-aminocaproic acid (EACA) (Fig. S3A) and we did not measure increased fibrin degradation products after ROTEM® analysis in the presence of oxHDL (Fig. S3C). In addition, in the presence of cytochalasin D, which inhibits platelet function and decreases the MCF, the effect of oxHDL was not seen (Fig. S3B). Taken together this suggested that the decrease in clot firmness induced by oxHDL was not caused by fibrin breakdown but predominantly involved platelets. ROTEM® analysis suggested a time-dependent inhibitory effect of oxHDL on blood clot firmness (Fig. 1A). During thromboelastography platelets are activated and aggregate, as shown by the increase in clot firmness at the beginning. In the presence of oxHDL the clot firmness started to decline after about 10 min, suggesting that platelet aggregates fall apart. This decline stopped at an amplitude of around 9 mm, which was similar to the amplitude reached when the effect of platelets was eliminated by cytochalasin D. These data suggested that the platelet contribution to the clot firmness was lost completely when oxHDL was added to the blood. Studies in the past observed similar thromboelastographic patterns and suggested either the relaxation of the retracted clot 13 or the release of the clot from the wall of the cup due to increased clot retraction 14. High-density lipoprotein (HDL) can inhibit platelet aggregation via binding to the scavenger receptor B type I (SR-BI) on platelets. However, whether this is true for nHDL, specific HDL subfractions or oxidatively-modified HDL is still controversial 15-18. The possible involvement of platelets was studied by investigating the effect of oxHDL on both plasma clot retraction and platelet aggregation. OxHDL (2–4 mg mL−1) did not have any effect on plasma clot retraction using plasma with 150 * 109 platelets L1 (Fig. S4A). Only at a low platelet concentration (75 × 109 platelets L−1) and a high oxHDL concentration (4 mg mL−1) was a minimal decrease in plasma clot retraction observed (data not shown). OxHDL as well as nHDL (2 mg mL−1) slightly decreased platelet aggregation induced by thrombin; however, there was no difference between nHDL and oxHDL (Fig. S4B). These data are in line with Valiyaveettil et al. 15, though other studies concluded that nHDL had no effect at all and that oxHDL can even activate platelets 16, 19. The reasons for these discrepancies are not clear. Differences in lipoprotein isolation methods, platelet agonists and oxidation conditions may play a part in the inconsistent results. In conclusion, we did not observe any effect of nHDL on coagulation and fibrinolysis using thromboelastography. However, oxHDL diminished the blood clot firmness by an unknown mechanism involving platelets. The small decreases in clot retraction at low platelet concentrations and in platelet aggregation could probably not explain the diminished clot firmness. We rejected the hypothesis that in the presence of oxHDL the clot retraction becomes stronger and results in the release of the clot from the cup wall and in that way apparently decreases the clot firmness 14. Unfortunately, using standard plasma clot retraction assays we could not determine the effect of oxHDL on clot relaxation. More studies are needed to elucidate the mechanism by which oxHDL diminishes the blood clot firmness. The concentrations of oxHDL used here are most likely higher than in the circulation. However, it cannot be excluded that locally the concentration of oxHDL can be much higher than in the circulation. We wish to thank A. van Tol and T. van Gent for their help with the isolation and handling of lipoproteins. The authors state that they have no conflict of interests. Data S1. Materials and methods. Fig. S1. SDS-PAGE analysis of different HDL preparations after staining with colloidal blue. Fig. S2. Effect of different HDL and LDL preparations on blood clot firmness, investigated using thromboelastography analysis. Fig. S3. Effect of oxHDL on blood clot firmness and fibrinolysis. Fig. S4. The effect of oxHDL on clot retraction and platelet aggregation. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article." @default.
- W2066885836 created "2016-06-24" @default.
- W2066885836 creator A5002870795 @default.
- W2066885836 creator A5013184731 @default.
- W2066885836 creator A5033019020 @default.
- W2066885836 creator A5035254428 @default.
- W2066885836 date "2013-03-01" @default.
- W2066885836 modified "2023-10-13" @default.
- W2066885836 title "Oxidized high-density lipoprotein reduces blood clot firmness" @default.
- W2066885836 cites W1963915605 @default.
- W2066885836 cites W1964828665 @default.
- W2066885836 cites W1969200048 @default.
- W2066885836 cites W1999196234 @default.
- W2066885836 cites W2016040116 @default.
- W2066885836 cites W2050923219 @default.
- W2066885836 cites W2059888954 @default.
- W2066885836 cites W2068985852 @default.
- W2066885836 cites W2077420019 @default.
- W2066885836 cites W2082774395 @default.
- W2066885836 cites W2083315579 @default.
- W2066885836 cites W2087782461 @default.
- W2066885836 cites W2088677753 @default.
- W2066885836 cites W2103507414 @default.
- W2066885836 cites W2109457071 @default.
- W2066885836 cites W2114810042 @default.
- W2066885836 cites W2116409842 @default.
- W2066885836 cites W2128633067 @default.
- W2066885836 cites W2141731387 @default.
- W2066885836 doi "https://doi.org/10.1111/jth.12125" @default.
- W2066885836 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23294903" @default.
- W2066885836 hasPublicationYear "2013" @default.
- W2066885836 type Work @default.
- W2066885836 sameAs 2066885836 @default.
- W2066885836 citedByCount "5" @default.
- W2066885836 countsByYear W20668858362013 @default.
- W2066885836 countsByYear W20668858362014 @default.
- W2066885836 countsByYear W20668858362017 @default.
- W2066885836 countsByYear W20668858362022 @default.
- W2066885836 countsByYear W20668858362023 @default.
- W2066885836 crossrefType "journal-article" @default.
- W2066885836 hasAuthorship W2066885836A5002870795 @default.
- W2066885836 hasAuthorship W2066885836A5013184731 @default.
- W2066885836 hasAuthorship W2066885836A5033019020 @default.
- W2066885836 hasAuthorship W2066885836A5035254428 @default.
- W2066885836 hasBestOaLocation W20668858361 @default.
- W2066885836 hasConcept C126322002 @default.
- W2066885836 hasConcept C164705383 @default.
- W2066885836 hasConcept C185592680 @default.
- W2066885836 hasConcept C71924100 @default.
- W2066885836 hasConceptScore W2066885836C126322002 @default.
- W2066885836 hasConceptScore W2066885836C164705383 @default.
- W2066885836 hasConceptScore W2066885836C185592680 @default.
- W2066885836 hasConceptScore W2066885836C71924100 @default.
- W2066885836 hasIssue "3" @default.
- W2066885836 hasLocation W20668858361 @default.
- W2066885836 hasLocation W20668858362 @default.
- W2066885836 hasOpenAccess W2066885836 @default.
- W2066885836 hasPrimaryLocation W20668858361 @default.
- W2066885836 hasRelatedWork W1531601525 @default.
- W2066885836 hasRelatedWork W2748952813 @default.
- W2066885836 hasRelatedWork W2758277628 @default.
- W2066885836 hasRelatedWork W2899084033 @default.
- W2066885836 hasRelatedWork W2948807893 @default.
- W2066885836 hasRelatedWork W3173606202 @default.
- W2066885836 hasRelatedWork W3183948672 @default.
- W2066885836 hasRelatedWork W4387497383 @default.
- W2066885836 hasRelatedWork W2778153218 @default.
- W2066885836 hasRelatedWork W3110381201 @default.
- W2066885836 hasVolume "11" @default.
- W2066885836 isParatext "false" @default.
- W2066885836 isRetracted "false" @default.
- W2066885836 magId "2066885836" @default.
- W2066885836 workType "article" @default.