Matches in SemOpenAlex for { <https://semopenalex.org/work/W2067360098> ?p ?o ?g. }
- W2067360098 endingPage "1069" @default.
- W2067360098 startingPage "1057" @default.
- W2067360098 abstract "The appearance of multicellular animals and subsequent radiation during the Ediacaran/Cambrian transition may have significantly changed the oceanic ecosystem. Nitrogen cycling is essential for primary productivity and thus its connection to animal evolution is important for understanding the co-evolution of the Earth's environment and life. Here, we first report on coupled organic carbon and nitrogen isotope chemostratigraphy from the entire Ediacaran to Early Cambrian period by using drill core samples from the Yangtze Platform, South China. The results show that δ15NTN values were high (~ + 6‰) until middle Ediacaran, gradually dropping down to − 1‰ at the earliest Cambrian, then rising back to + 4‰ in the end of the Early Cambrian. Organic carbon and nitrogen contents widely varied with a relatively constant C/N ratio in each stratigraphic unit, and do not apparently control the carbon and nitrogen isotopic trends. These observations suggest that the δ15NTN and C/N trends mainly reflect secular changes in nitrogen cycling in the Yangtze Platform. Onset of the observed negative N isotope excursion coincided with a global carbon isotope excursion event (Shuram excursion). Before the Shuram event, the high δ15N probably reflects denitrification in a nitrate-limited oceanic condition. Also, degradation of dissolved and particulate organic matter could be an additional mechanism for the 15N-enrichment, and may have been significant when the ocean was rich in organic matter. At the time of the Shuram event, both δ13Ccarb and δ15NTN values were dropped probably due to massive re-mineralization of organic matter. This scenario is supported by an anomalously low C/N ratio, implying that enhanced respiration resulted in selective loss of carbon as CO2 with recycled organic nitrogen. After the Shuram event, the δ15N value continued to decrease despite that δ13Ccarb rose back to + 4‰. The continued δ15N drop appears to have coincided with a decreasing phosphorus content in carbonate. This suggests that ocean oxygenation may have generated a more nitrate-rich condition with respect to phosphorus as a limiting nutrient. Similar to the Shuram event, another negative δ13Ccarb event in the Canglanpuan stage of the Early Cambrian is also characterized by carbon isotopic decoupling as well as the low C/N ratio. The results strongly support that the two stages of the decoupled negative δ13Ccarb excursions reflect a disappearance of a large organic carbon pool in the ocean. The two events appear to relate with the appearance of new metazoan taxa with novel feeding strategies, suggesting a link between ocean oxygenation, nutrient cycling and the appearance and adaptation of metazoans. The nitrogen isotope geochemistry is very useful to understand the link between the environmental, ecological and biological evolutions." @default.
- W2067360098 created "2016-06-24" @default.
- W2067360098 creator A5000258015 @default.
- W2067360098 creator A5002155845 @default.
- W2067360098 creator A5004038402 @default.
- W2067360098 creator A5030358399 @default.
- W2067360098 creator A5030589279 @default.
- W2067360098 creator A5035076319 @default.
- W2067360098 creator A5075648208 @default.
- W2067360098 creator A5080317984 @default.
- W2067360098 creator A5080953096 @default.
- W2067360098 creator A5081450789 @default.
- W2067360098 date "2014-04-01" @default.
- W2067360098 modified "2023-09-30" @default.
- W2067360098 title "Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China" @default.
- W2067360098 cites W1503687813 @default.
- W2067360098 cites W1587078339 @default.
- W2067360098 cites W1967762627 @default.
- W2067360098 cites W1968499642 @default.
- W2067360098 cites W1969494113 @default.
- W2067360098 cites W1969591890 @default.
- W2067360098 cites W1971984857 @default.
- W2067360098 cites W1972857233 @default.
- W2067360098 cites W1974056600 @default.
- W2067360098 cites W1976518385 @default.
- W2067360098 cites W1978554953 @default.
- W2067360098 cites W1988443803 @default.
- W2067360098 cites W1988680430 @default.
- W2067360098 cites W1988966899 @default.
- W2067360098 cites W1989234914 @default.
- W2067360098 cites W1989402614 @default.
- W2067360098 cites W1991777637 @default.
- W2067360098 cites W1991800138 @default.
- W2067360098 cites W1998831676 @default.
- W2067360098 cites W2003295260 @default.
- W2067360098 cites W2004614425 @default.
- W2067360098 cites W2006780579 @default.
- W2067360098 cites W2009599435 @default.
- W2067360098 cites W2013428409 @default.
- W2067360098 cites W2013490303 @default.
- W2067360098 cites W2015912909 @default.
- W2067360098 cites W2016004304 @default.
- W2067360098 cites W2016049452 @default.
- W2067360098 cites W2016581740 @default.
- W2067360098 cites W2018134771 @default.
- W2067360098 cites W2018500283 @default.
- W2067360098 cites W2020693111 @default.
- W2067360098 cites W2023754370 @default.
- W2067360098 cites W2024627509 @default.
- W2067360098 cites W2030125283 @default.
- W2067360098 cites W2032443576 @default.
- W2067360098 cites W2034574812 @default.
- W2067360098 cites W2041286603 @default.
- W2067360098 cites W2043589082 @default.
- W2067360098 cites W2048243940 @default.
- W2067360098 cites W2048864911 @default.
- W2067360098 cites W2050501375 @default.
- W2067360098 cites W2050682668 @default.
- W2067360098 cites W2051981458 @default.
- W2067360098 cites W2052324375 @default.
- W2067360098 cites W2053136811 @default.
- W2067360098 cites W2055252514 @default.
- W2067360098 cites W2064718526 @default.
- W2067360098 cites W2066086830 @default.
- W2067360098 cites W2072241937 @default.
- W2067360098 cites W2073448816 @default.
- W2067360098 cites W2076897940 @default.
- W2067360098 cites W2078069967 @default.
- W2067360098 cites W2079999532 @default.
- W2067360098 cites W2080386235 @default.
- W2067360098 cites W2084911169 @default.
- W2067360098 cites W2092008995 @default.
- W2067360098 cites W2092650147 @default.
- W2067360098 cites W2107380527 @default.
- W2067360098 cites W2111414198 @default.
- W2067360098 cites W2118715042 @default.
- W2067360098 cites W2118775280 @default.
- W2067360098 cites W2119179804 @default.
- W2067360098 cites W2120780573 @default.
- W2067360098 cites W2126839513 @default.
- W2067360098 cites W2130220748 @default.
- W2067360098 cites W2134676488 @default.
- W2067360098 cites W2135979056 @default.
- W2067360098 cites W2146921256 @default.
- W2067360098 cites W2162868035 @default.
- W2067360098 cites W2164396249 @default.
- W2067360098 cites W2165705207 @default.
- W2067360098 cites W2168346738 @default.
- W2067360098 cites W2313539223 @default.
- W2067360098 cites W2316630964 @default.
- W2067360098 cites W2335642403 @default.
- W2067360098 cites W2741455888 @default.
- W2067360098 cites W4231087235 @default.
- W2067360098 doi "https://doi.org/10.1016/j.gr.2013.06.002" @default.
- W2067360098 hasPublicationYear "2014" @default.
- W2067360098 type Work @default.
- W2067360098 sameAs 2067360098 @default.
- W2067360098 citedByCount "66" @default.