Matches in SemOpenAlex for { <https://semopenalex.org/work/W2097192090> ?p ?o ?g. }
- W2097192090 endingPage "180" @default.
- W2097192090 startingPage "145" @default.
- W2097192090 abstract "The homogenization of a heterogeneous mixture of two pure fluids with different densities by molecular diffusion and stirring induced by buoyancy-generated motions, as occurs in the Rayleigh–Taylor (RT) instability, is studied using direct numerical simulations. The Schmidt number, Sc , is varied by a factor of 20, 0.1 ≤ Sc ≤ 2.0, and the Atwood number, A , by a factor of 10, 0.05 ≤ A ≤ 0.5. Initial-density intensities are as high as 50% of the mean density. As a consequence of differential accelerations experienced by the two fluids, substantial and important differences between the mixing in a variable-density flow, as compared to the Boussinesq approximation, are observed. In short, the pure heavy fluid mixes more slowly than the pure light fluid : an initially symmetric double delta density probability density function (PDF) is rapidly skewed and, only at long times and low density fluctuations, does it relax to a Gaussian-like PDF. The heavy–light fluid mixing process asymmetry is relevant to the nature of molecular mixing on different sides of a high-Atwood-number RT layer. Diverse mix metrics are used to examine the homogenization of the two fluids. The conventional mix parameter, θ, is mathematically related to the variance of the excess reactant of a hypothetical fast chemical reaction. Bounds relating θ and the normalized product, Ξ , are derived. It is shown that θ underpredicts the mixing, as compared to Ξ , in the central regions of an RT layer; in the edge regions, θ is larger than Ξ . The shape of the density PDF cannot be inferred from the usual mix metrics popular in applications. For example, when θ, Ξ ≥ 0.6, characteristic of the interior of a fully developed RT layer, the PDFs can have vastly different shapes. Bounds on the fluid composition using two low-order moments of the density PDF are derived. The bounds can be used as realizability conditions for low-dimensional models. For the measures studied, the tightest bounds are obtained using Ξ and mean density. The structure of the flow is also examined. It is found that, at early times, the buoyancy production term in the spectral kinetic energy equation is important at all wavenumbers and leads to anisotropy at all scales of motion. At later times, the anisotropy is confined to the largest and smallest scales: the intermediate scales are more isotropic than the small scales . In the viscous range, there is a cancellation between the viscous and nonlinear effects, and the buoyancy production leads to a persistent small-scale anisotropy." @default.
- W2097192090 created "2016-06-24" @default.
- W2097192090 creator A5025353253 @default.
- W2097192090 creator A5045656065 @default.
- W2097192090 date "2008-05-23" @default.
- W2097192090 modified "2023-10-12" @default.
- W2097192090 title "Variable-density mixing in buoyancy-driven turbulence" @default.
- W2097192090 cites W1571960106 @default.
- W2097192090 cites W1675954576 @default.
- W2097192090 cites W1969875687 @default.
- W2097192090 cites W1993944206 @default.
- W2097192090 cites W1994376567 @default.
- W2097192090 cites W1996705411 @default.
- W2097192090 cites W2009681701 @default.
- W2097192090 cites W2012214365 @default.
- W2097192090 cites W2016117592 @default.
- W2097192090 cites W2024850677 @default.
- W2097192090 cites W2037451814 @default.
- W2097192090 cites W2041759710 @default.
- W2097192090 cites W2052274279 @default.
- W2097192090 cites W2064913452 @default.
- W2097192090 cites W2077811063 @default.
- W2097192090 cites W2090593033 @default.
- W2097192090 cites W2095211880 @default.
- W2097192090 cites W2097445047 @default.
- W2097192090 cites W2110163917 @default.
- W2097192090 cites W2120094236 @default.
- W2097192090 cites W2130312478 @default.
- W2097192090 cites W2139208974 @default.
- W2097192090 cites W2153469139 @default.
- W2097192090 cites W2157735331 @default.
- W2097192090 cites W2172040771 @default.
- W2097192090 cites W2603833283 @default.
- W2097192090 cites W2983391787 @default.
- W2097192090 cites W4239461701 @default.
- W2097192090 doi "https://doi.org/10.1017/s0022112008001481" @default.
- W2097192090 hasPublicationYear "2008" @default.
- W2097192090 type Work @default.
- W2097192090 sameAs 2097192090 @default.
- W2097192090 citedByCount "107" @default.
- W2097192090 countsByYear W20971920902012 @default.
- W2097192090 countsByYear W20971920902013 @default.
- W2097192090 countsByYear W20971920902014 @default.
- W2097192090 countsByYear W20971920902015 @default.
- W2097192090 countsByYear W20971920902016 @default.
- W2097192090 countsByYear W20971920902017 @default.
- W2097192090 countsByYear W20971920902018 @default.
- W2097192090 countsByYear W20971920902019 @default.
- W2097192090 countsByYear W20971920902020 @default.
- W2097192090 countsByYear W20971920902021 @default.
- W2097192090 countsByYear W20971920902022 @default.
- W2097192090 countsByYear W20971920902023 @default.
- W2097192090 crossrefType "journal-article" @default.
- W2097192090 hasAuthorship W2097192090A5025353253 @default.
- W2097192090 hasAuthorship W2097192090A5045656065 @default.
- W2097192090 hasConcept C105795698 @default.
- W2097192090 hasConcept C121332964 @default.
- W2097192090 hasConcept C130217890 @default.
- W2097192090 hasConcept C138777275 @default.
- W2097192090 hasConcept C155231867 @default.
- W2097192090 hasConcept C162324750 @default.
- W2097192090 hasConcept C176217482 @default.
- W2097192090 hasConcept C182748727 @default.
- W2097192090 hasConcept C18903297 @default.
- W2097192090 hasConcept C196558001 @default.
- W2097192090 hasConcept C197055811 @default.
- W2097192090 hasConcept C207821765 @default.
- W2097192090 hasConcept C21547014 @default.
- W2097192090 hasConcept C2778722038 @default.
- W2097192090 hasConcept C2778892434 @default.
- W2097192090 hasConcept C2916875 @default.
- W2097192090 hasConcept C33923547 @default.
- W2097192090 hasConcept C38976095 @default.
- W2097192090 hasConcept C538625479 @default.
- W2097192090 hasConcept C57736034 @default.
- W2097192090 hasConcept C57879066 @default.
- W2097192090 hasConcept C62520636 @default.
- W2097192090 hasConcept C86803240 @default.
- W2097192090 hasConcept C97355855 @default.
- W2097192090 hasConceptScore W2097192090C105795698 @default.
- W2097192090 hasConceptScore W2097192090C121332964 @default.
- W2097192090 hasConceptScore W2097192090C130217890 @default.
- W2097192090 hasConceptScore W2097192090C138777275 @default.
- W2097192090 hasConceptScore W2097192090C155231867 @default.
- W2097192090 hasConceptScore W2097192090C162324750 @default.
- W2097192090 hasConceptScore W2097192090C176217482 @default.
- W2097192090 hasConceptScore W2097192090C182748727 @default.
- W2097192090 hasConceptScore W2097192090C18903297 @default.
- W2097192090 hasConceptScore W2097192090C196558001 @default.
- W2097192090 hasConceptScore W2097192090C197055811 @default.
- W2097192090 hasConceptScore W2097192090C207821765 @default.
- W2097192090 hasConceptScore W2097192090C21547014 @default.
- W2097192090 hasConceptScore W2097192090C2778722038 @default.
- W2097192090 hasConceptScore W2097192090C2778892434 @default.
- W2097192090 hasConceptScore W2097192090C2916875 @default.
- W2097192090 hasConceptScore W2097192090C33923547 @default.
- W2097192090 hasConceptScore W2097192090C38976095 @default.
- W2097192090 hasConceptScore W2097192090C538625479 @default.