Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109507695> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2109507695 endingPage "1383" @default.
- W2109507695 startingPage "1372" @default.
- W2109507695 abstract "ABSTRACT Traffic anomalies caused by Distributed Denial‐of‐Service (DDoS) attacks are major threats to both network service providers and legitimate customers. The DDoS attacks regularly consume and exhaust the resources of victims and hence result in abnormal bursty traffic through end‐user systems. Additionally, malicious traffic aggregated into normal traffic often show dramatic changes in the traffic nature and statistical features. This study focuses on early detection of traffic anomalies caused by DDoS attacks in light of analyzing the network traffic behavior. Key statistical features including variance, autocorrelation, and self‐similarity are employed to characterize the network traffic. Further, artificial neural network and support vector machine subject to the performance metrics are employed to predict and classify the abnormal traffic. The proposed diagnosis mechanism is validated through experiments where the datasets consist of two groups. The first group is the Massachusetts Institute of Technology Lincoln Laboratory dataset containing labeled DoS attack. The second group collected from DDoS attack simulation experiments covers three representative traffic shapes resulting from the dynamic attack rate configuration, namely, constant intensity, ramp‐up behavior, and pulsing behavior. The experimental results demonstrate that the developed mechanism can effectively and precisely alert the abnormal traffic within short response period. Copyright © 2013 John Wiley & Sons, Ltd." @default.
- W2109507695 created "2016-06-24" @default.
- W2109507695 creator A5017849073 @default.
- W2109507695 creator A5021976455 @default.
- W2109507695 creator A5083702949 @default.
- W2109507695 creator A5089831302 @default.
- W2109507695 date "2013-09-30" @default.
- W2109507695 modified "2023-09-25" @default.
- W2109507695 title "Anomaly diagnosis based on regression and classification analysis of statistical traffic features" @default.
- W2109507695 cites W2104692292 @default.
- W2109507695 cites W2105818147 @default.
- W2109507695 cites W2106796827 @default.
- W2109507695 cites W2107035663 @default.
- W2109507695 cites W2115379950 @default.
- W2109507695 cites W2116183119 @default.
- W2109507695 cites W2120475852 @default.
- W2109507695 cites W2124589355 @default.
- W2109507695 cites W2127042109 @default.
- W2109507695 cites W2140598395 @default.
- W2109507695 cites W2146648348 @default.
- W2109507695 cites W2152560573 @default.
- W2109507695 cites W2153334513 @default.
- W2109507695 cites W2157157130 @default.
- W2109507695 cites W2164505501 @default.
- W2109507695 cites W2170874246 @default.
- W2109507695 cites W2171593430 @default.
- W2109507695 doi "https://doi.org/10.1002/sec.843" @default.
- W2109507695 hasPublicationYear "2013" @default.
- W2109507695 type Work @default.
- W2109507695 sameAs 2109507695 @default.
- W2109507695 citedByCount "4" @default.
- W2109507695 countsByYear W21095076952016 @default.
- W2109507695 countsByYear W21095076952017 @default.
- W2109507695 countsByYear W21095076952018 @default.
- W2109507695 countsByYear W21095076952020 @default.
- W2109507695 crossrefType "journal-article" @default.
- W2109507695 hasAuthorship W2109507695A5017849073 @default.
- W2109507695 hasAuthorship W2109507695A5021976455 @default.
- W2109507695 hasAuthorship W2109507695A5083702949 @default.
- W2109507695 hasAuthorship W2109507695A5089831302 @default.
- W2109507695 hasConcept C110875604 @default.
- W2109507695 hasConcept C12267149 @default.
- W2109507695 hasConcept C124101348 @default.
- W2109507695 hasConcept C136764020 @default.
- W2109507695 hasConcept C154945302 @default.
- W2109507695 hasConcept C204673680 @default.
- W2109507695 hasConcept C31258907 @default.
- W2109507695 hasConcept C38652104 @default.
- W2109507695 hasConcept C38822068 @default.
- W2109507695 hasConcept C41008148 @default.
- W2109507695 hasConcept C739882 @default.
- W2109507695 hasConceptScore W2109507695C110875604 @default.
- W2109507695 hasConceptScore W2109507695C12267149 @default.
- W2109507695 hasConceptScore W2109507695C124101348 @default.
- W2109507695 hasConceptScore W2109507695C136764020 @default.
- W2109507695 hasConceptScore W2109507695C154945302 @default.
- W2109507695 hasConceptScore W2109507695C204673680 @default.
- W2109507695 hasConceptScore W2109507695C31258907 @default.
- W2109507695 hasConceptScore W2109507695C38652104 @default.
- W2109507695 hasConceptScore W2109507695C38822068 @default.
- W2109507695 hasConceptScore W2109507695C41008148 @default.
- W2109507695 hasConceptScore W2109507695C739882 @default.
- W2109507695 hasIssue "9" @default.
- W2109507695 hasLocation W21095076951 @default.
- W2109507695 hasOpenAccess W2109507695 @default.
- W2109507695 hasPrimaryLocation W21095076951 @default.
- W2109507695 hasRelatedWork W1978857479 @default.
- W2109507695 hasRelatedWork W2130966263 @default.
- W2109507695 hasRelatedWork W2355927362 @default.
- W2109507695 hasRelatedWork W2785259781 @default.
- W2109507695 hasRelatedWork W3026018975 @default.
- W2109507695 hasRelatedWork W3026917846 @default.
- W2109507695 hasRelatedWork W4281641933 @default.
- W2109507695 hasRelatedWork W4367309228 @default.
- W2109507695 hasRelatedWork W4377970398 @default.
- W2109507695 hasRelatedWork W4386235013 @default.
- W2109507695 hasVolume "7" @default.
- W2109507695 isParatext "false" @default.
- W2109507695 isRetracted "false" @default.
- W2109507695 magId "2109507695" @default.
- W2109507695 workType "article" @default.