Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133390503> ?p ?o ?g. }
- W2133390503 endingPage "13002" @default.
- W2133390503 startingPage "12975" @default.
- W2133390503 abstract "A one‐dimensional photochemical model for cloud‐topped boundary layers is developed which includes detailed descriptions of gas‐phase and aqueous‐phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, California, during a wintertime stagnation episode with low stratus. The main features of the observations are well simulated; in particular, sulfate accumulates progressively over the course of the episode due to sustained aqueous‐phase oxidation of SO 2 in the stratus cloud. The major source of sulfate is the reaction S(IV) + Fe(III), provided that this reaction proceeds by a non radical mechanism in which Fe(III) is not reduced. A radical mechanism with SO 3 − and Fe(II) as immediate products would quench sulfate production because of depletion of Fe(III). The model results suggest that the non radical mechanism is more consistent with observations, although this result follows from the absence of a rapid Fe(II) oxidation pathway in the model. Even with the non‐radical mechanism, most of the soluble iron is present as Fe(II) because Fe(III) is rapidly reduced by O 2 − . The S(IV) + Fe(III) reaction provides the principal source of H 2 O 2 in the model; photochemical production of H 2 O 2 from HO 2 or O 2 (−I) is slow because HO 2 is depleted by high levels of NO x . The aqueous‐phase reaction S(IV) + OH initiates a radical‐assisted S(IV) oxidation chain but we find that the chain is not propagated due to efficient termination by SO 4 − + Cl − followed by Cl + H 2 O. A major uncertainty attached to that result is that the reactivities of S(IV)‐carbonyl adducts with radical oxidants are unknown. The chain could be efficiently propagated, with high sulfate yields, if the S(IV)‐carbonyl adducts were involved in chain propagation. A remarkable feature of the observations, which is well reproduced by the model, is the close balance between total atmospheric concentrations of acids and bases. We argue that this balance reflects the control of sulfate production by NH 3 , which follows from the p H dependence of the S(IV) + Fe(III) reaction. Such a balance should be a general characteristic of polluted environments where aqueous‐phase oxidation of SO 2 is the main source of acidity. At night, the acidity of the cloud approaches a steady state between NH 3 emissions and H 2 SO 4 production by the S(IV) + Fe(III) reaction. A steady state analysis suggests that [H + ] at night should be proportional to (E SO 2 /E NH 3 ) 1/2 where E SO 2 and E NH 3 are emission rates of SO 2 and NH 3 , respectively. From this analysis it appears that cloud water p H values below 3 are unlikely to occur in the Bakersfield atmosphere during the nighttime hours. Very high acidities could, however, be achieved in the daytime because of photochemical acid production by the gas‐phase reactions NO 2 + OH and SO 2 + OH." @default.
- W2133390503 created "2016-06-24" @default.
- W2133390503 creator A5011740304 @default.
- W2133390503 creator A5086706846 @default.
- W2133390503 creator A5087251657 @default.
- W2133390503 date "1989-09-20" @default.
- W2133390503 modified "2023-10-09" @default.
- W2133390503 title "Chemistry of a polluted cloudy boundary layer" @default.
- W2133390503 cites W1570045084 @default.
- W2133390503 cites W1968816470 @default.
- W2133390503 cites W1969309398 @default.
- W2133390503 cites W1969853362 @default.
- W2133390503 cites W1970045661 @default.
- W2133390503 cites W1970652095 @default.
- W2133390503 cites W1971692760 @default.
- W2133390503 cites W1974433565 @default.
- W2133390503 cites W1977298287 @default.
- W2133390503 cites W1986637029 @default.
- W2133390503 cites W1987036651 @default.
- W2133390503 cites W1987394228 @default.
- W2133390503 cites W1988720904 @default.
- W2133390503 cites W1995128140 @default.
- W2133390503 cites W1997892519 @default.
- W2133390503 cites W2000807759 @default.
- W2133390503 cites W2001415968 @default.
- W2133390503 cites W2001861274 @default.
- W2133390503 cites W2002829253 @default.
- W2133390503 cites W2003596736 @default.
- W2133390503 cites W2004349136 @default.
- W2133390503 cites W2011780198 @default.
- W2133390503 cites W2011937430 @default.
- W2133390503 cites W2013200191 @default.
- W2133390503 cites W2014783292 @default.
- W2133390503 cites W2014848461 @default.
- W2133390503 cites W2016241302 @default.
- W2133390503 cites W2020678016 @default.
- W2133390503 cites W2031045438 @default.
- W2133390503 cites W2035207338 @default.
- W2133390503 cites W2036250195 @default.
- W2133390503 cites W2039586189 @default.
- W2133390503 cites W2039843554 @default.
- W2133390503 cites W2042112467 @default.
- W2133390503 cites W2044885233 @default.
- W2133390503 cites W2046910287 @default.
- W2133390503 cites W2051057697 @default.
- W2133390503 cites W2051802937 @default.
- W2133390503 cites W2054985699 @default.
- W2133390503 cites W2057033600 @default.
- W2133390503 cites W2058464886 @default.
- W2133390503 cites W2059006576 @default.
- W2133390503 cites W2059010829 @default.
- W2133390503 cites W2060675881 @default.
- W2133390503 cites W2061621310 @default.
- W2133390503 cites W2063258764 @default.
- W2133390503 cites W2064685914 @default.
- W2133390503 cites W2064873104 @default.
- W2133390503 cites W2065817500 @default.
- W2133390503 cites W2068407329 @default.
- W2133390503 cites W2068624965 @default.
- W2133390503 cites W2070288673 @default.
- W2133390503 cites W2070736875 @default.
- W2133390503 cites W2070831192 @default.
- W2133390503 cites W2076339667 @default.
- W2133390503 cites W2082912064 @default.
- W2133390503 cites W2084029513 @default.
- W2133390503 cites W2086176473 @default.
- W2133390503 cites W2087066880 @default.
- W2133390503 cites W2088107806 @default.
- W2133390503 cites W2095059645 @default.
- W2133390503 cites W2095823914 @default.
- W2133390503 cites W2096953265 @default.
- W2133390503 cites W2103073612 @default.
- W2133390503 cites W210386604 @default.
- W2133390503 cites W2104389971 @default.
- W2133390503 cites W2105443754 @default.
- W2133390503 cites W2125018109 @default.
- W2133390503 cites W2126939666 @default.
- W2133390503 cites W2131756101 @default.
- W2133390503 cites W2138245814 @default.
- W2133390503 cites W2142567868 @default.
- W2133390503 cites W2153160115 @default.
- W2133390503 cites W2155704085 @default.
- W2133390503 cites W2166668914 @default.
- W2133390503 cites W2271613113 @default.
- W2133390503 cites W2317077592 @default.
- W2133390503 cites W2346525985 @default.
- W2133390503 cites W2489733193 @default.
- W2133390503 cites W2504548809 @default.
- W2133390503 cites W2788887448 @default.
- W2133390503 cites W307000743 @default.
- W2133390503 cites W4240282013 @default.
- W2133390503 cites W4248869889 @default.
- W2133390503 cites W4255155366 @default.
- W2133390503 cites W4301973482 @default.
- W2133390503 doi "https://doi.org/10.1029/jd094id10p12975" @default.
- W2133390503 hasPublicationYear "1989" @default.
- W2133390503 type Work @default.
- W2133390503 sameAs 2133390503 @default.