Matches in SemOpenAlex for { <https://semopenalex.org/work/W2148100764> ?p ?o ?g. }
- W2148100764 endingPage "2406" @default.
- W2148100764 startingPage "2397" @default.
- W2148100764 abstract "Remote sensing estimation of impervious surface is significant in monitoring urban development and determining the overall environmental health of a watershed, and it has therefore attracted more interest recently in the remote sensing community. The main objective of this paper is to examine and compare the effectiveness of two advanced algorithms for estimating impervious surfaces from medium spatial resolution satellite images, namely, linear spectral mixture analysis (LSMA) and artificial neural network (ANN). Terra's Advanced Spaceborne Thermal Emission and Reflection Radiometer [(ASTER); acquired on June 16,2001] and a Landsat Enhanced Thematic Mapper Plus (ETM+) image (acquired on June 22, 2000) of Indianapolis, IN, were used for the analysis. The LSMA was employed to generate high- and low-albedo, vegetation, and soil fraction images (endmembers), and an image of impervious surfaces was then estimated by adding high- and low-albedo fraction images. Furthermore, an ANN model, specifically the multilayer-perceptron feedforward network with the back-propagation learning algorithm, was employed as a subpixel image classifier to estimate impervious surfaces. Accuracy assessment was performed against a high- resolution digital orthophoto. The results show that ANN was more effective than LSMA in generating impervious surfaces with high statistical accuracy. For the ASTER image, the root-mean-square error (RMSE) of the impervious surface map with the ANN model was 12.3%, and the one that resulted from LSMA was 13.2%. For the ETM+ image, the RMSE with the ANN model was 16.7%, and the one from LSMA was 18.9%. The better performance of ANN over LSMA is mainly attributable to the ANN'S capability of handling the nonlinear mixing of image spectrum. In order to test the seasonal sensitivity of satellite images for estimating impervious surfaces, LSMA was applied to two additional ASTER images of the same area, which are acquired on April 5, 2004, and October 3, 2000, respectively. The results were then compared with the ASTER image acquired in June in terms of RMSE. The June image had the highest accuracy, whereas the October image was better than the one in April. Plant phenology caused changes in the variance partitioning and impacted the mixing-space characterization, leading to a less accurate estimation of impervious surfaces." @default.
- W2148100764 created "2016-06-24" @default.
- W2148100764 creator A5004755532 @default.
- W2148100764 creator A5044839781 @default.
- W2148100764 date "2008-08-01" @default.
- W2148100764 modified "2023-10-17" @default.
- W2148100764 title "Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN" @default.
- W2148100764 cites W1972658976 @default.
- W2148100764 cites W1983726893 @default.
- W2148100764 cites W1988797124 @default.
- W2148100764 cites W2010735452 @default.
- W2148100764 cites W2010797227 @default.
- W2148100764 cites W2015620132 @default.
- W2148100764 cites W2019281621 @default.
- W2148100764 cites W2019899368 @default.
- W2148100764 cites W2026332487 @default.
- W2148100764 cites W2032046865 @default.
- W2148100764 cites W2078696375 @default.
- W2148100764 cites W2082874195 @default.
- W2148100764 cites W2106779184 @default.
- W2148100764 cites W2120627814 @default.
- W2148100764 cites W2122566937 @default.
- W2148100764 cites W2128462828 @default.
- W2148100764 cites W2130269771 @default.
- W2148100764 cites W2136625467 @default.
- W2148100764 cites W2140351252 @default.
- W2148100764 cites W2147406638 @default.
- W2148100764 cites W2159530395 @default.
- W2148100764 cites W2164377514 @default.
- W2148100764 cites W2166917517 @default.
- W2148100764 cites W2168678594 @default.
- W2148100764 cites W2172009270 @default.
- W2148100764 doi "https://doi.org/10.1109/tgrs.2008.917601" @default.
- W2148100764 hasPublicationYear "2008" @default.
- W2148100764 type Work @default.
- W2148100764 sameAs 2148100764 @default.
- W2148100764 citedByCount "132" @default.
- W2148100764 countsByYear W21481007642012 @default.
- W2148100764 countsByYear W21481007642013 @default.
- W2148100764 countsByYear W21481007642014 @default.
- W2148100764 countsByYear W21481007642015 @default.
- W2148100764 countsByYear W21481007642016 @default.
- W2148100764 countsByYear W21481007642017 @default.
- W2148100764 countsByYear W21481007642018 @default.
- W2148100764 countsByYear W21481007642019 @default.
- W2148100764 countsByYear W21481007642020 @default.
- W2148100764 countsByYear W21481007642021 @default.
- W2148100764 countsByYear W21481007642022 @default.
- W2148100764 countsByYear W21481007642023 @default.
- W2148100764 crossrefType "journal-article" @default.
- W2148100764 hasAuthorship W2148100764A5004755532 @default.
- W2148100764 hasAuthorship W2148100764A5044839781 @default.
- W2148100764 hasConcept C105795698 @default.
- W2148100764 hasConcept C127313418 @default.
- W2148100764 hasConcept C13772937 @default.
- W2148100764 hasConcept C139945424 @default.
- W2148100764 hasConcept C154945302 @default.
- W2148100764 hasConcept C181843262 @default.
- W2148100764 hasConcept C18903297 @default.
- W2148100764 hasConcept C205372480 @default.
- W2148100764 hasConcept C23690007 @default.
- W2148100764 hasConcept C2668921 @default.
- W2148100764 hasConcept C2775938548 @default.
- W2148100764 hasConcept C2776445388 @default.
- W2148100764 hasConcept C2778102629 @default.
- W2148100764 hasConcept C33923547 @default.
- W2148100764 hasConcept C39432304 @default.
- W2148100764 hasConcept C41008148 @default.
- W2148100764 hasConcept C62649853 @default.
- W2148100764 hasConcept C82789328 @default.
- W2148100764 hasConcept C86803240 @default.
- W2148100764 hasConcept C87456703 @default.
- W2148100764 hasConceptScore W2148100764C105795698 @default.
- W2148100764 hasConceptScore W2148100764C127313418 @default.
- W2148100764 hasConceptScore W2148100764C13772937 @default.
- W2148100764 hasConceptScore W2148100764C139945424 @default.
- W2148100764 hasConceptScore W2148100764C154945302 @default.
- W2148100764 hasConceptScore W2148100764C181843262 @default.
- W2148100764 hasConceptScore W2148100764C18903297 @default.
- W2148100764 hasConceptScore W2148100764C205372480 @default.
- W2148100764 hasConceptScore W2148100764C23690007 @default.
- W2148100764 hasConceptScore W2148100764C2668921 @default.
- W2148100764 hasConceptScore W2148100764C2775938548 @default.
- W2148100764 hasConceptScore W2148100764C2776445388 @default.
- W2148100764 hasConceptScore W2148100764C2778102629 @default.
- W2148100764 hasConceptScore W2148100764C33923547 @default.
- W2148100764 hasConceptScore W2148100764C39432304 @default.
- W2148100764 hasConceptScore W2148100764C41008148 @default.
- W2148100764 hasConceptScore W2148100764C62649853 @default.
- W2148100764 hasConceptScore W2148100764C82789328 @default.
- W2148100764 hasConceptScore W2148100764C86803240 @default.
- W2148100764 hasConceptScore W2148100764C87456703 @default.
- W2148100764 hasIssue "8" @default.
- W2148100764 hasLocation W21481007641 @default.
- W2148100764 hasOpenAccess W2148100764 @default.
- W2148100764 hasPrimaryLocation W21481007641 @default.
- W2148100764 hasRelatedWork W104845656 @default.
- W2148100764 hasRelatedWork W1524303412 @default.