Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157979199> ?p ?o ?g. }
- W2157979199 endingPage "348" @default.
- W2157979199 startingPage "348" @default.
- W2157979199 abstract "Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software." @default.
- W2157979199 created "2016-06-24" @default.
- W2157979199 creator A5015694397 @default.
- W2157979199 creator A5020344994 @default.
- W2157979199 creator A5023633559 @default.
- W2157979199 creator A5061519579 @default.
- W2157979199 creator A5066201432 @default.
- W2157979199 date "2014-01-07" @default.
- W2157979199 modified "2023-10-03" @default.
- W2157979199 title "Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology" @default.
- W2157979199 cites W1966727469 @default.
- W2157979199 cites W1975389498 @default.
- W2157979199 cites W1977793107 @default.
- W2157979199 cites W1985688303 @default.
- W2157979199 cites W1996176493 @default.
- W2157979199 cites W2001109731 @default.
- W2157979199 cites W2004490151 @default.
- W2157979199 cites W2006707592 @default.
- W2157979199 cites W2008056655 @default.
- W2157979199 cites W2011237852 @default.
- W2157979199 cites W2017888065 @default.
- W2157979199 cites W2021229920 @default.
- W2157979199 cites W2025988461 @default.
- W2157979199 cites W2027606067 @default.
- W2157979199 cites W2034753561 @default.
- W2157979199 cites W2036228250 @default.
- W2157979199 cites W2038850290 @default.
- W2157979199 cites W2056370875 @default.
- W2157979199 cites W2056575109 @default.
- W2157979199 cites W2057739630 @default.
- W2157979199 cites W2059495986 @default.
- W2157979199 cites W2060040689 @default.
- W2157979199 cites W2079413294 @default.
- W2157979199 cites W2084782093 @default.
- W2157979199 cites W2100546771 @default.
- W2157979199 cites W2100756624 @default.
- W2157979199 cites W2104298486 @default.
- W2157979199 cites W2114155779 @default.
- W2157979199 cites W2138923133 @default.
- W2157979199 cites W2140128594 @default.
- W2157979199 cites W2146112699 @default.
- W2157979199 cites W2154029877 @default.
- W2157979199 cites W2156984914 @default.
- W2157979199 cites W2165733437 @default.
- W2157979199 doi "https://doi.org/10.1364/boe.5.000348" @default.
- W2157979199 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3920868" @default.
- W2157979199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24575332" @default.
- W2157979199 hasPublicationYear "2014" @default.
- W2157979199 type Work @default.
- W2157979199 sameAs 2157979199 @default.
- W2157979199 citedByCount "112" @default.
- W2157979199 countsByYear W21579791992014 @default.
- W2157979199 countsByYear W21579791992015 @default.
- W2157979199 countsByYear W21579791992016 @default.
- W2157979199 countsByYear W21579791992017 @default.
- W2157979199 countsByYear W21579791992018 @default.
- W2157979199 countsByYear W21579791992019 @default.
- W2157979199 countsByYear W21579791992020 @default.
- W2157979199 countsByYear W21579791992021 @default.
- W2157979199 countsByYear W21579791992022 @default.
- W2157979199 countsByYear W21579791992023 @default.
- W2157979199 crossrefType "journal-article" @default.
- W2157979199 hasAuthorship W2157979199A5015694397 @default.
- W2157979199 hasAuthorship W2157979199A5020344994 @default.
- W2157979199 hasAuthorship W2157979199A5023633559 @default.
- W2157979199 hasAuthorship W2157979199A5061519579 @default.
- W2157979199 hasAuthorship W2157979199A5066201432 @default.
- W2157979199 hasBestOaLocation W21579791991 @default.
- W2157979199 hasConcept C115961682 @default.
- W2157979199 hasConcept C118487528 @default.
- W2157979199 hasConcept C124504099 @default.
- W2157979199 hasConcept C153180895 @default.
- W2157979199 hasConcept C154945302 @default.
- W2157979199 hasConcept C169760540 @default.
- W2157979199 hasConcept C2777093970 @default.
- W2157979199 hasConcept C2778818243 @default.
- W2157979199 hasConcept C2780827179 @default.
- W2157979199 hasConcept C31972630 @default.
- W2157979199 hasConcept C41008148 @default.
- W2157979199 hasConcept C71924100 @default.
- W2157979199 hasConcept C86803240 @default.
- W2157979199 hasConcept C89600930 @default.
- W2157979199 hasConcept C9417928 @default.
- W2157979199 hasConceptScore W2157979199C115961682 @default.
- W2157979199 hasConceptScore W2157979199C118487528 @default.
- W2157979199 hasConceptScore W2157979199C124504099 @default.
- W2157979199 hasConceptScore W2157979199C153180895 @default.
- W2157979199 hasConceptScore W2157979199C154945302 @default.
- W2157979199 hasConceptScore W2157979199C169760540 @default.
- W2157979199 hasConceptScore W2157979199C2777093970 @default.
- W2157979199 hasConceptScore W2157979199C2778818243 @default.
- W2157979199 hasConceptScore W2157979199C2780827179 @default.
- W2157979199 hasConceptScore W2157979199C31972630 @default.
- W2157979199 hasConceptScore W2157979199C41008148 @default.
- W2157979199 hasConceptScore W2157979199C71924100 @default.
- W2157979199 hasConceptScore W2157979199C86803240 @default.
- W2157979199 hasConceptScore W2157979199C89600930 @default.
- W2157979199 hasConceptScore W2157979199C9417928 @default.