Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247498641> ?p ?o ?g. }
- W2247498641 endingPage "66" @default.
- W2247498641 startingPage "54" @default.
- W2247498641 abstract "We present the open-source Python code pyMCZ that determines oxygen abundance and its distribution from strong emission lines in the standard metallicity calibrators, based on the original IDL code of Kewley and Dopita (2002) with updates from Kewley and Ellison (2008), and expanded to include more recently developed calibrators. The standard strong-line diagnostics have been used to estimate the oxygen abundance in the interstellar medium through various emission line ratios (referred to as indicators) in many areas of astrophysics, including galaxy evolution and supernova host galaxy studies. We introduce a Python implementation of these methods that, through Monte Carlo sampling, better characterizes the statistical oxygen abundance confidence region including the effect due to the propagation of observational uncertainties. These uncertainties are likely to dominate the error budget in the case of distant galaxies, hosts of cosmic explosions. Given line flux measurements and their uncertainties, our code produces synthetic distributions for the oxygen abundance in up to 15 metallicity calibrators simultaneously, as well as for E(B–V), and estimates their median values and their 68% confidence regions. We provide the option of outputting the full Monte Carlo distributions, and their Kernel Density estimates. We test our code on emission line measurements from a sample of nearby supernova host galaxies (z<0.15) and compare our metallicity results with those from previous methods. We show that our metallicity estimates are consistent with previous methods but yield smaller statistical uncertainties. It should be noted that systematic uncertainties are not taken into account. We also offer visualization tools to assess the spread of the oxygen abundance in the different calibrators, as well as the shape of the estimated oxygen abundance distribution in each calibrator, and develop robust metrics for determining the appropriate Monte Carlo sample size. The code is open access and open source and can be found at https://github.com/nyusngroup/pyMCZ." @default.
- W2247498641 created "2016-06-24" @default.
- W2247498641 creator A5001715016 @default.
- W2247498641 creator A5004012698 @default.
- W2247498641 creator A5027796962 @default.
- W2247498641 creator A5037085989 @default.
- W2247498641 creator A5045838953 @default.
- W2247498641 creator A5058550166 @default.
- W2247498641 creator A5067706647 @default.
- W2247498641 date "2016-07-01" @default.
- W2247498641 modified "2023-10-15" @default.
- W2247498641 title "Monte Carlo method for calculating oxygen abundances and their uncertainties from strong-line flux measurements" @default.
- W2247498641 cites W1760966995 @default.
- W2247498641 cites W1857585881 @default.
- W2247498641 cites W1967876247 @default.
- W2247498641 cites W1991506407 @default.
- W2247498641 cites W1991642840 @default.
- W2247498641 cites W1992570077 @default.
- W2247498641 cites W1998665435 @default.
- W2247498641 cites W2002163268 @default.
- W2247498641 cites W2010356064 @default.
- W2247498641 cites W2011301426 @default.
- W2247498641 cites W2011654732 @default.
- W2247498641 cites W2013978456 @default.
- W2247498641 cites W2015110151 @default.
- W2247498641 cites W2019819247 @default.
- W2247498641 cites W2029438261 @default.
- W2247498641 cites W2032949105 @default.
- W2247498641 cites W2034110904 @default.
- W2247498641 cites W2035225065 @default.
- W2247498641 cites W2035630444 @default.
- W2247498641 cites W2049682476 @default.
- W2247498641 cites W2054008190 @default.
- W2247498641 cites W2062243600 @default.
- W2247498641 cites W2067857092 @default.
- W2247498641 cites W2068928940 @default.
- W2247498641 cites W2069399805 @default.
- W2247498641 cites W2073868676 @default.
- W2247498641 cites W2087589760 @default.
- W2247498641 cites W2087617996 @default.
- W2247498641 cites W2090482424 @default.
- W2247498641 cites W2096147217 @default.
- W2247498641 cites W2100183643 @default.
- W2247498641 cites W2101726256 @default.
- W2247498641 cites W2117897510 @default.
- W2247498641 cites W2118114070 @default.
- W2247498641 cites W2123696780 @default.
- W2247498641 cites W2124181276 @default.
- W2247498641 cites W2124999166 @default.
- W2247498641 cites W2127979873 @default.
- W2247498641 cites W2130275104 @default.
- W2247498641 cites W2150554216 @default.
- W2247498641 cites W2153036891 @default.
- W2247498641 cites W2153219938 @default.
- W2247498641 cites W2163212281 @default.
- W2247498641 cites W2167635287 @default.
- W2247498641 cites W2233019358 @default.
- W2247498641 cites W2899497983 @default.
- W2247498641 cites W2951323278 @default.
- W2247498641 cites W2952971324 @default.
- W2247498641 cites W3100729087 @default.
- W2247498641 cites W3100862643 @default.
- W2247498641 cites W3101113109 @default.
- W2247498641 cites W3101147177 @default.
- W2247498641 cites W3101256371 @default.
- W2247498641 cites W3102819868 @default.
- W2247498641 cites W3104880822 @default.
- W2247498641 cites W3104914725 @default.
- W2247498641 cites W3105187411 @default.
- W2247498641 cites W3105692948 @default.
- W2247498641 cites W3122935102 @default.
- W2247498641 cites W3124057309 @default.
- W2247498641 cites W4290086390 @default.
- W2247498641 cites W4298037686 @default.
- W2247498641 doi "https://doi.org/10.1016/j.ascom.2016.03.002" @default.
- W2247498641 hasPublicationYear "2016" @default.
- W2247498641 type Work @default.
- W2247498641 sameAs 2247498641 @default.
- W2247498641 citedByCount "32" @default.
- W2247498641 countsByYear W22474986412016 @default.
- W2247498641 countsByYear W22474986412017 @default.
- W2247498641 countsByYear W22474986412018 @default.
- W2247498641 countsByYear W22474986412019 @default.
- W2247498641 countsByYear W22474986412020 @default.
- W2247498641 countsByYear W22474986412021 @default.
- W2247498641 countsByYear W22474986412022 @default.
- W2247498641 countsByYear W22474986412023 @default.
- W2247498641 crossrefType "journal-article" @default.
- W2247498641 hasAuthorship W2247498641A5001715016 @default.
- W2247498641 hasAuthorship W2247498641A5004012698 @default.
- W2247498641 hasAuthorship W2247498641A5027796962 @default.
- W2247498641 hasAuthorship W2247498641A5037085989 @default.
- W2247498641 hasAuthorship W2247498641A5045838953 @default.
- W2247498641 hasAuthorship W2247498641A5058550166 @default.
- W2247498641 hasAuthorship W2247498641A5067706647 @default.
- W2247498641 hasBestOaLocation W22474986411 @default.
- W2247498641 hasConcept C105795698 @default.
- W2247498641 hasConcept C111350023 @default.