Matches in SemOpenAlex for { <https://semopenalex.org/work/W2289216512> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2289216512 endingPage "5" @default.
- W2289216512 startingPage "1" @default.
- W2289216512 abstract "is the most dangerous form of skin cancer. It must be detected in the initial stage to increase the survival rates. In medical field, Melanoma detection is usually done by clinical analysis and biopsy tests. These methods are time consuming, expensive and have many side effects. Thus, an automated melanoma detection system is better to assess a patient's risk of melanoma in the initial phase with high accuracy. Existing automated melanoma detection systems make use of thresholding, statistical region merging and Otsu's method for segmentation. These segmentation methods do not include texture analysis, so the accuracy is less. Accuracy of segmentation and melanoma detection can be improved by examining the textural features of skin lesion. Computer aided melanoma detection system using image processing techniques is proposed for accurate and early detection of melanoma. This system has different stages which include preprocessing for image enhancement, segmentation of skin lesion using textural features to improve accuracy, feature extraction and classification. The input image is preprocessed using contrast stretching for image enhancement. The enhanced image is segmented using Texture Distinctiveness Lesion Segmentation (TDLS) algorithm to extract the lesion area from the background skin. Feature extraction is done using graylevel cooccurrence matrix. The system is trained with the extracted features using a good classifier to classify the lesion as malignant or benign melanoma. Accuracy of the proposed system is computed and compared with other segmentation and classification algorithms." @default.
- W2289216512 created "2016-06-24" @default.
- W2289216512 creator A5089233924 @default.
- W2289216512 creator A5090991061 @default.
- W2289216512 date "2015-10-15" @default.
- W2289216512 modified "2023-10-17" @default.
- W2289216512 title "Melanoma Detection using Statistical Texture Distinctiveness Segmentation" @default.
- W2289216512 cites W1581573873 @default.
- W2289216512 cites W2024476192 @default.
- W2289216512 cites W2058305271 @default.
- W2289216512 cites W2083652081 @default.
- W2289216512 cites W2089104464 @default.
- W2289216512 cites W2133218851 @default.
- W2289216512 cites W2161102362 @default.
- W2289216512 cites W2161588624 @default.
- W2289216512 cites W2140565099 @default.
- W2289216512 doi "https://doi.org/10.5120/ijca2015906637" @default.
- W2289216512 hasPublicationYear "2015" @default.
- W2289216512 type Work @default.
- W2289216512 sameAs 2289216512 @default.
- W2289216512 citedByCount "1" @default.
- W2289216512 countsByYear W22892165122020 @default.
- W2289216512 crossrefType "journal-article" @default.
- W2289216512 hasAuthorship W2289216512A5089233924 @default.
- W2289216512 hasAuthorship W2289216512A5090991061 @default.
- W2289216512 hasBestOaLocation W22892165121 @default.
- W2289216512 hasConcept C115961682 @default.
- W2289216512 hasConcept C153180895 @default.
- W2289216512 hasConcept C154945302 @default.
- W2289216512 hasConcept C15744967 @default.
- W2289216512 hasConcept C2781195486 @default.
- W2289216512 hasConcept C31972630 @default.
- W2289216512 hasConcept C41008148 @default.
- W2289216512 hasConcept C47385372 @default.
- W2289216512 hasConcept C542102704 @default.
- W2289216512 hasConcept C89600930 @default.
- W2289216512 hasConceptScore W2289216512C115961682 @default.
- W2289216512 hasConceptScore W2289216512C153180895 @default.
- W2289216512 hasConceptScore W2289216512C154945302 @default.
- W2289216512 hasConceptScore W2289216512C15744967 @default.
- W2289216512 hasConceptScore W2289216512C2781195486 @default.
- W2289216512 hasConceptScore W2289216512C31972630 @default.
- W2289216512 hasConceptScore W2289216512C41008148 @default.
- W2289216512 hasConceptScore W2289216512C47385372 @default.
- W2289216512 hasConceptScore W2289216512C542102704 @default.
- W2289216512 hasConceptScore W2289216512C89600930 @default.
- W2289216512 hasIssue "15" @default.
- W2289216512 hasLocation W22892165121 @default.
- W2289216512 hasLocation W22892165122 @default.
- W2289216512 hasOpenAccess W2289216512 @default.
- W2289216512 hasPrimaryLocation W22892165121 @default.
- W2289216512 hasRelatedWork W1669643531 @default.
- W2289216512 hasRelatedWork W2005437358 @default.
- W2289216512 hasRelatedWork W2008656436 @default.
- W2289216512 hasRelatedWork W2023558673 @default.
- W2289216512 hasRelatedWork W2039154422 @default.
- W2289216512 hasRelatedWork W2110230079 @default.
- W2289216512 hasRelatedWork W2122581818 @default.
- W2289216512 hasRelatedWork W2134924024 @default.
- W2289216512 hasRelatedWork W2517104666 @default.
- W2289216512 hasRelatedWork W2182382398 @default.
- W2289216512 hasVolume "127" @default.
- W2289216512 isParatext "false" @default.
- W2289216512 isRetracted "false" @default.
- W2289216512 magId "2289216512" @default.
- W2289216512 workType "article" @default.