Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296286962> ?p ?o ?g. }
- W2296286962 endingPage "921" @default.
- W2296286962 startingPage "892" @default.
- W2296286962 abstract "In the present study, three numerical meshless methods are being considered to solve coupled Klein-Gordon-Schrodinger equations in one, two and three dimensions. First, the time derivative of the mentioned equation will be approximated using an implicit method based on Crank-Nicolson scheme then Kansa's approach, RBFs-Pseudo-spectral (PS) method and generalized moving least squares (GMLS) method will be used to approximate the spatial derivatives. The proposed methods do not require any background mesh or cell structures, so they are based on a meshless approach. Applying three techniques reduces the solution of the one, two and three dimensional partial differential equations to the solution of linear system of algebraic equations. As is well-known, the use of Kansa's approach makes the coefficients matrix in the above linear system of algebraic equations to be ill-conditioned and we applied LU decomposition technique. But when we employ PS method (Fasshauer, 2007), the matrix of coefficients in the obtained linear system of algebraic equations is well-conditioned. Also the GMLS technique yields a well-conditioned linear system, because a shifted and scaled polynomial basis will be used. At the end of this paper, we provide some examples on one, two and three-dimensions for obtaining numerical simulations. Also the obtained numerical results show the applicability of the proposed three methods to find the numerical solution of the KGS equations." @default.
- W2296286962 created "2016-06-24" @default.
- W2296286962 creator A5044309986 @default.
- W2296286962 creator A5090517671 @default.
- W2296286962 date "2016-02-01" @default.
- W2296286962 modified "2023-10-02" @default.
- W2296286962 title "Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein–Gordon–Schrödinger (KGS) equations" @default.
- W2296286962 cites W112187595 @default.
- W2296286962 cites W1259147758 @default.
- W2296286962 cites W1489216236 @default.
- W2296286962 cites W1965948812 @default.
- W2296286962 cites W1967990418 @default.
- W2296286962 cites W1968458248 @default.
- W2296286962 cites W1969592291 @default.
- W2296286962 cites W1972104727 @default.
- W2296286962 cites W1972321468 @default.
- W2296286962 cites W1974322848 @default.
- W2296286962 cites W1974798585 @default.
- W2296286962 cites W1976709585 @default.
- W2296286962 cites W1977027705 @default.
- W2296286962 cites W1982218665 @default.
- W2296286962 cites W1982828055 @default.
- W2296286962 cites W1984123162 @default.
- W2296286962 cites W1988744163 @default.
- W2296286962 cites W1990176752 @default.
- W2296286962 cites W1990784906 @default.
- W2296286962 cites W1994931978 @default.
- W2296286962 cites W1995143047 @default.
- W2296286962 cites W2000457254 @default.
- W2296286962 cites W2006292600 @default.
- W2296286962 cites W2008528659 @default.
- W2296286962 cites W2008658910 @default.
- W2296286962 cites W2009836214 @default.
- W2296286962 cites W2013244899 @default.
- W2296286962 cites W2014070176 @default.
- W2296286962 cites W2014795350 @default.
- W2296286962 cites W2015697821 @default.
- W2296286962 cites W2015725973 @default.
- W2296286962 cites W2022247868 @default.
- W2296286962 cites W2022816016 @default.
- W2296286962 cites W2023938950 @default.
- W2296286962 cites W2027828864 @default.
- W2296286962 cites W2028050352 @default.
- W2296286962 cites W2029030293 @default.
- W2296286962 cites W2029090963 @default.
- W2296286962 cites W2030028087 @default.
- W2296286962 cites W2032698779 @default.
- W2296286962 cites W2037964739 @default.
- W2296286962 cites W2038091767 @default.
- W2296286962 cites W2039186616 @default.
- W2296286962 cites W2041383077 @default.
- W2296286962 cites W2045812925 @default.
- W2296286962 cites W2046106414 @default.
- W2296286962 cites W2047877145 @default.
- W2296286962 cites W2050373304 @default.
- W2296286962 cites W2052129902 @default.
- W2296286962 cites W2056107846 @default.
- W2296286962 cites W2060687833 @default.
- W2296286962 cites W2063896209 @default.
- W2296286962 cites W2067140462 @default.
- W2296286962 cites W2068505839 @default.
- W2296286962 cites W2069557073 @default.
- W2296286962 cites W2074885527 @default.
- W2296286962 cites W2078797044 @default.
- W2296286962 cites W2082508631 @default.
- W2296286962 cites W2090536661 @default.
- W2296286962 cites W2091355226 @default.
- W2296286962 cites W2091361560 @default.
- W2296286962 cites W2094174973 @default.
- W2296286962 cites W2095739370 @default.
- W2296286962 cites W2105819360 @default.
- W2296286962 cites W2111058857 @default.
- W2296286962 cites W2114632523 @default.
- W2296286962 cites W2119838320 @default.
- W2296286962 cites W2127343577 @default.
- W2296286962 cites W2127689830 @default.
- W2296286962 cites W2130811901 @default.
- W2296286962 cites W2137046381 @default.
- W2296286962 cites W2141790616 @default.
- W2296286962 cites W2152727585 @default.
- W2296286962 cites W2163032683 @default.
- W2296286962 cites W2166773194 @default.
- W2296286962 cites W2598223504 @default.
- W2296286962 cites W2060614615 @default.
- W2296286962 doi "https://doi.org/10.1016/j.camwa.2015.12.033" @default.
- W2296286962 hasPublicationYear "2016" @default.
- W2296286962 type Work @default.
- W2296286962 sameAs 2296286962 @default.
- W2296286962 citedByCount "38" @default.
- W2296286962 countsByYear W22962869622016 @default.
- W2296286962 countsByYear W22962869622017 @default.
- W2296286962 countsByYear W22962869622018 @default.
- W2296286962 countsByYear W22962869622019 @default.
- W2296286962 countsByYear W22962869622020 @default.
- W2296286962 countsByYear W22962869622021 @default.
- W2296286962 countsByYear W22962869622022 @default.
- W2296286962 countsByYear W22962869622023 @default.
- W2296286962 crossrefType "journal-article" @default.