Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316679890> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2316679890 endingPage "51" @default.
- W2316679890 startingPage "45" @default.
- W2316679890 abstract "Estimating the contribution of forests to carbon sequestration is commonly done by applying forest growth models. Such models inherently use field observations, such as leaf area index (LAI), whereas relevant information is also available from remotely sensed images. The purpose of this study is to improve the LAI estimated from the physiological principles predicting growth (3-PG) model by combining its output with LAI derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. A Bayesian network (BN) approach is proposed to take care of the different structure of the inaccuracies in the two data sources. It addresses the bias in the 3-PG model and the noise of the ASTER images. Moreover, the EM algorithm is introduced into BN to estimate missing the LAI ASTER data, since they are not available for long time series due to the atmospheric conditions. This paper shows that the outputs obtained with the BN were more accurate than the 3-PG estimate, as the root mean square error reduces to 0.46, and the relative error to 5.86%. We conclude that the EM-algorithm within a BN can adequately handle missing LAI ASTER values, and BNs can improve the estimation of LAI values. Ultimately, this method may be used as a predicting model of LAI values, and handling the missing data of ASTER images time series." @default.
- W2316679890 created "2016-06-24" @default.
- W2316679890 creator A5010072631 @default.
- W2316679890 creator A5072229838 @default.
- W2316679890 creator A5082935691 @default.
- W2316679890 date "2012-01-01" @default.
- W2316679890 modified "2023-09-25" @default.
- W2316679890 title "Improving Forest Growth Estimates Using a Bayesian Network Approach" @default.
- W2316679890 cites W113087805 @default.
- W2316679890 cites W1755360231 @default.
- W2316679890 cites W1973410094 @default.
- W2316679890 cites W1977349531 @default.
- W2316679890 cites W1984261660 @default.
- W2316679890 cites W1984567898 @default.
- W2316679890 cites W2002609334 @default.
- W2316679890 cites W2023373255 @default.
- W2316679890 cites W2025130417 @default.
- W2316679890 cites W2029353551 @default.
- W2316679890 cites W2031925862 @default.
- W2316679890 cites W2071454092 @default.
- W2316679890 cites W2083053342 @default.
- W2316679890 cites W2109516333 @default.
- W2316679890 cites W2121028877 @default.
- W2316679890 cites W2128142470 @default.
- W2316679890 cites W2131937665 @default.
- W2316679890 cites W2143185985 @default.
- W2316679890 cites W2151880387 @default.
- W2316679890 doi "https://doi.org/10.14358/pers.78.1.45" @default.
- W2316679890 hasPublicationYear "2012" @default.
- W2316679890 type Work @default.
- W2316679890 sameAs 2316679890 @default.
- W2316679890 citedByCount "8" @default.
- W2316679890 countsByYear W23166798902012 @default.
- W2316679890 countsByYear W23166798902014 @default.
- W2316679890 countsByYear W23166798902015 @default.
- W2316679890 countsByYear W23166798902019 @default.
- W2316679890 countsByYear W23166798902020 @default.
- W2316679890 countsByYear W23166798902022 @default.
- W2316679890 crossrefType "journal-article" @default.
- W2316679890 hasAuthorship W2316679890A5010072631 @default.
- W2316679890 hasAuthorship W2316679890A5072229838 @default.
- W2316679890 hasAuthorship W2316679890A5082935691 @default.
- W2316679890 hasBestOaLocation W23166798901 @default.
- W2316679890 hasConcept C100970517 @default.
- W2316679890 hasConcept C105795698 @default.
- W2316679890 hasConcept C107673813 @default.
- W2316679890 hasConcept C154945302 @default.
- W2316679890 hasConcept C205649164 @default.
- W2316679890 hasConcept C33724603 @default.
- W2316679890 hasConcept C33923547 @default.
- W2316679890 hasConcept C41008148 @default.
- W2316679890 hasConcept C58640448 @default.
- W2316679890 hasConcept C97137747 @default.
- W2316679890 hasConceptScore W2316679890C100970517 @default.
- W2316679890 hasConceptScore W2316679890C105795698 @default.
- W2316679890 hasConceptScore W2316679890C107673813 @default.
- W2316679890 hasConceptScore W2316679890C154945302 @default.
- W2316679890 hasConceptScore W2316679890C205649164 @default.
- W2316679890 hasConceptScore W2316679890C33724603 @default.
- W2316679890 hasConceptScore W2316679890C33923547 @default.
- W2316679890 hasConceptScore W2316679890C41008148 @default.
- W2316679890 hasConceptScore W2316679890C58640448 @default.
- W2316679890 hasConceptScore W2316679890C97137747 @default.
- W2316679890 hasIssue "1" @default.
- W2316679890 hasLocation W23166798901 @default.
- W2316679890 hasOpenAccess W2316679890 @default.
- W2316679890 hasPrimaryLocation W23166798901 @default.
- W2316679890 hasRelatedWork W1996532971 @default.
- W2316679890 hasRelatedWork W2015373329 @default.
- W2316679890 hasRelatedWork W2195601633 @default.
- W2316679890 hasRelatedWork W2297080984 @default.
- W2316679890 hasRelatedWork W2370221588 @default.
- W2316679890 hasRelatedWork W239633216 @default.
- W2316679890 hasRelatedWork W2748952813 @default.
- W2316679890 hasRelatedWork W2899084033 @default.
- W2316679890 hasRelatedWork W4225596744 @default.
- W2316679890 hasRelatedWork W4236579886 @default.
- W2316679890 hasVolume "78" @default.
- W2316679890 isParatext "false" @default.
- W2316679890 isRetracted "false" @default.
- W2316679890 magId "2316679890" @default.
- W2316679890 workType "article" @default.