Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337324125> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2337324125 abstract "The performance of Model Predictive Control (MPC) is strongly influenced by the quality of the reference model which is used in the MPC algorithm to predict the system outputs into the future. To date, most applications of MPC are based on linear models which cannot be expected to describe very nonlinear processes. Nonlinear MPC can readily be formulated, but nonlinear process models are often more complex and require considerable effort to develop. The development of neural networks in recent years offers the possibility of powerful and flexible modeling of a wide range of nonlinear systems with fast computation speed. By using the strength of neural network modeling techniques, an advanced and general model predictive control can be formed.The Radial Basis Function Neural Network (RBFN), a type of feedforward neural network, is a particularly attractive form of neural network for use in MPC applications because it offers the possibility of rapid retraining, facilitating adaptation to changing process behavior. The usual RBFN model is a one-step ahead predictor. In MPC, multi-step ahead predictions are needed. Although the RBFN model can be iterated to get multi-step ahead prediction, errors may accumulate during the successive iterations. Therefore, a multi-step Time-Lag Recurrent Radial Basis Function Neural Network (TLRRBFN) was used. A new and efficient training algorithm was developed to train the TLRRBFN which facilitates on-line adaptation of the weights of the TLRRBFN model.To implement the Neural Network Based Model Predictive Control (NNMPC), the TLRRBFN model is used as a reference model. In this work, the NNMPC was evaluated on three simulated test systems, including a multi-input-multi-output (MIMO) Continuous Stirred Tank Reactor (CSTR) (Li and Biegler, 1988). In each case, for set point change problem, the NNMPC algorithm shows good tracking performance without offset. The NNMPC algorithm also shows good disturbance rejection ability. It was also found that including a filter in the feedback path was useful in improving the stability of the NNMPC algorithm. For all three nonlinear processes studied, the NNMPC outperformed conventional PID controller." @default.
- W2337324125 created "2016-06-24" @default.
- W2337324125 creator A5002165072 @default.
- W2337324125 creator A5089890065 @default.
- W2337324125 date "1994-01-01" @default.
- W2337324125 modified "2023-09-27" @default.
- W2337324125 title "A neural network based model predictive controller" @default.
- W2337324125 hasPublicationYear "1994" @default.
- W2337324125 type Work @default.
- W2337324125 sameAs 2337324125 @default.
- W2337324125 citedByCount "0" @default.
- W2337324125 crossrefType "journal-article" @default.
- W2337324125 hasAuthorship W2337324125A5002165072 @default.
- W2337324125 hasAuthorship W2337324125A5089890065 @default.
- W2337324125 hasConcept C111919701 @default.
- W2337324125 hasConcept C119857082 @default.
- W2337324125 hasConcept C121332964 @default.
- W2337324125 hasConcept C127413603 @default.
- W2337324125 hasConcept C132917294 @default.
- W2337324125 hasConcept C133731056 @default.
- W2337324125 hasConcept C147168706 @default.
- W2337324125 hasConcept C154945302 @default.
- W2337324125 hasConcept C158622935 @default.
- W2337324125 hasConcept C163175372 @default.
- W2337324125 hasConcept C172205157 @default.
- W2337324125 hasConcept C2775924081 @default.
- W2337324125 hasConcept C38858127 @default.
- W2337324125 hasConcept C41008148 @default.
- W2337324125 hasConcept C47446073 @default.
- W2337324125 hasConcept C47702885 @default.
- W2337324125 hasConcept C50644808 @default.
- W2337324125 hasConcept C62520636 @default.
- W2337324125 hasConcept C98045186 @default.
- W2337324125 hasConcept C98856871 @default.
- W2337324125 hasConceptScore W2337324125C111919701 @default.
- W2337324125 hasConceptScore W2337324125C119857082 @default.
- W2337324125 hasConceptScore W2337324125C121332964 @default.
- W2337324125 hasConceptScore W2337324125C127413603 @default.
- W2337324125 hasConceptScore W2337324125C132917294 @default.
- W2337324125 hasConceptScore W2337324125C133731056 @default.
- W2337324125 hasConceptScore W2337324125C147168706 @default.
- W2337324125 hasConceptScore W2337324125C154945302 @default.
- W2337324125 hasConceptScore W2337324125C158622935 @default.
- W2337324125 hasConceptScore W2337324125C163175372 @default.
- W2337324125 hasConceptScore W2337324125C172205157 @default.
- W2337324125 hasConceptScore W2337324125C2775924081 @default.
- W2337324125 hasConceptScore W2337324125C38858127 @default.
- W2337324125 hasConceptScore W2337324125C41008148 @default.
- W2337324125 hasConceptScore W2337324125C47446073 @default.
- W2337324125 hasConceptScore W2337324125C47702885 @default.
- W2337324125 hasConceptScore W2337324125C50644808 @default.
- W2337324125 hasConceptScore W2337324125C62520636 @default.
- W2337324125 hasConceptScore W2337324125C98045186 @default.
- W2337324125 hasConceptScore W2337324125C98856871 @default.
- W2337324125 hasLocation W23373241251 @default.
- W2337324125 hasOpenAccess W2337324125 @default.
- W2337324125 hasPrimaryLocation W23373241251 @default.
- W2337324125 hasRelatedWork W147520208 @default.
- W2337324125 hasRelatedWork W1548424729 @default.
- W2337324125 hasRelatedWork W1551713020 @default.
- W2337324125 hasRelatedWork W1584989822 @default.
- W2337324125 hasRelatedWork W1605563421 @default.
- W2337324125 hasRelatedWork W1612709349 @default.
- W2337324125 hasRelatedWork W1975759856 @default.
- W2337324125 hasRelatedWork W1988141348 @default.
- W2337324125 hasRelatedWork W2009825703 @default.
- W2337324125 hasRelatedWork W2011177627 @default.
- W2337324125 hasRelatedWork W2021441226 @default.
- W2337324125 hasRelatedWork W2038507465 @default.
- W2337324125 hasRelatedWork W2093729660 @default.
- W2337324125 hasRelatedWork W2278196053 @default.
- W2337324125 hasRelatedWork W2364239705 @default.
- W2337324125 hasRelatedWork W2587546571 @default.
- W2337324125 hasRelatedWork W2767107118 @default.
- W2337324125 hasRelatedWork W2981080198 @default.
- W2337324125 hasRelatedWork W2996157263 @default.
- W2337324125 hasRelatedWork W3154216414 @default.
- W2337324125 isParatext "false" @default.
- W2337324125 isRetracted "false" @default.
- W2337324125 magId "2337324125" @default.
- W2337324125 workType "article" @default.