Matches in SemOpenAlex for { <https://semopenalex.org/work/W2352584037> ?p ?o ?g. }
- W2352584037 endingPage "14661" @default.
- W2352584037 startingPage "14639" @default.
- W2352584037 abstract "NADPH-cytochrome P450 oxidoreductase transfers electrons from NADPH to cytochromes P450 via its FAD and FMN. To understand the biochemical and structural basis of electron transfer from FMN-hydroquinone to its partners, three deletion mutants in a conserved loop near the FMN were characterized. Comparison of oxidized and reduced wild type and mutant structures reveals that the basis for the air stability of the neutral blue semiquinone is protonation of the flavin N5 and strong H-bond formation with the Gly-141 carbonyl. The ΔGly-143 protein had moderately decreased activity with cytochrome P450 and cytochrome c. It formed a flexible loop, which transiently interacts with the flavin N5, resulting in the generation of both an unstable neutral blue semiquinone and hydroquinone. The ΔGly-141 and ΔG141/E142N mutants were inactive with cytochrome P450 but fully active in reducing cytochrome c. In the ΔGly-141 mutants, the backbone amide of Glu/Asn-142 forms an H-bond to the N5 of the oxidized flavin, which leads to formation of an unstable red anionic semiquinone with a more negative potential than the hydroquinone. The semiquinone of ΔG141/E142N was slightly more stable than that of ΔGly-141, consistent with its crystallographically demonstrated more rigid loop. Nonetheless, both ΔGly-141 red semiquinones were less stable than those of the corresponding loop in cytochrome P450 BM3 and the neuronal NOS mutant (ΔGly-810). Our results indicate that the catalytic activity of cytochrome P450 oxidoreductase is a function of the length, sequence, and flexibility of the 140s loop and illustrate the sophisticated variety of biochemical mechanisms employed in fine-tuning its redox properties and function. NADPH-cytochrome P450 oxidoreductase transfers electrons from NADPH to cytochromes P450 via its FAD and FMN. To understand the biochemical and structural basis of electron transfer from FMN-hydroquinone to its partners, three deletion mutants in a conserved loop near the FMN were characterized. Comparison of oxidized and reduced wild type and mutant structures reveals that the basis for the air stability of the neutral blue semiquinone is protonation of the flavin N5 and strong H-bond formation with the Gly-141 carbonyl. The ΔGly-143 protein had moderately decreased activity with cytochrome P450 and cytochrome c. It formed a flexible loop, which transiently interacts with the flavin N5, resulting in the generation of both an unstable neutral blue semiquinone and hydroquinone. The ΔGly-141 and ΔG141/E142N mutants were inactive with cytochrome P450 but fully active in reducing cytochrome c. In the ΔGly-141 mutants, the backbone amide of Glu/Asn-142 forms an H-bond to the N5 of the oxidized flavin, which leads to formation of an unstable red anionic semiquinone with a more negative potential than the hydroquinone. The semiquinone of ΔG141/E142N was slightly more stable than that of ΔGly-141, consistent with its crystallographically demonstrated more rigid loop. Nonetheless, both ΔGly-141 red semiquinones were less stable than those of the corresponding loop in cytochrome P450 BM3 and the neuronal NOS mutant (ΔGly-810). Our results indicate that the catalytic activity of cytochrome P450 oxidoreductase is a function of the length, sequence, and flexibility of the 140s loop and illustrate the sophisticated variety of biochemical mechanisms employed in fine-tuning its redox properties and function." @default.
- W2352584037 created "2016-06-24" @default.
- W2352584037 creator A5008496489 @default.
- W2352584037 creator A5040612727 @default.
- W2352584037 creator A5050932910 @default.
- W2352584037 creator A5061137007 @default.
- W2352584037 creator A5066940861 @default.
- W2352584037 creator A5067430639 @default.
- W2352584037 creator A5076231663 @default.
- W2352584037 date "2016-07-01" @default.
- W2352584037 modified "2023-10-18" @default.
- W2352584037 title "Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone" @default.
- W2352584037 cites W1488421511 @default.
- W2352584037 cites W1539796472 @default.
- W2352584037 cites W1554826669 @default.
- W2352584037 cites W1579297624 @default.
- W2352584037 cites W1604191551 @default.
- W2352584037 cites W1639043875 @default.
- W2352584037 cites W1709437539 @default.
- W2352584037 cites W1968552814 @default.
- W2352584037 cites W1968887021 @default.
- W2352584037 cites W1971854407 @default.
- W2352584037 cites W1973009377 @default.
- W2352584037 cites W1973102177 @default.
- W2352584037 cites W1974302220 @default.
- W2352584037 cites W1983098087 @default.
- W2352584037 cites W1984798563 @default.
- W2352584037 cites W1985939956 @default.
- W2352584037 cites W1986080936 @default.
- W2352584037 cites W1990741945 @default.
- W2352584037 cites W1993361677 @default.
- W2352584037 cites W1998252754 @default.
- W2352584037 cites W2006352258 @default.
- W2352584037 cites W2007677502 @default.
- W2352584037 cites W2009569320 @default.
- W2352584037 cites W2010446682 @default.
- W2352584037 cites W2017421343 @default.
- W2352584037 cites W2018873107 @default.
- W2352584037 cites W2019648546 @default.
- W2352584037 cites W2022798135 @default.
- W2352584037 cites W2034242966 @default.
- W2352584037 cites W2039826443 @default.
- W2352584037 cites W2041062021 @default.
- W2352584037 cites W2046017285 @default.
- W2352584037 cites W2046643394 @default.
- W2352584037 cites W2048746773 @default.
- W2352584037 cites W2049785072 @default.
- W2352584037 cites W2052000269 @default.
- W2352584037 cites W2054166508 @default.
- W2352584037 cites W2061370608 @default.
- W2352584037 cites W2068252164 @default.
- W2352584037 cites W2074655761 @default.
- W2352584037 cites W2078846646 @default.
- W2352584037 cites W2078880422 @default.
- W2352584037 cites W2079904876 @default.
- W2352584037 cites W2081099271 @default.
- W2352584037 cites W2082053795 @default.
- W2352584037 cites W2082466616 @default.
- W2352584037 cites W2083098259 @default.
- W2352584037 cites W2090669633 @default.
- W2352584037 cites W2092305650 @default.
- W2352584037 cites W2093346236 @default.
- W2352584037 cites W2101871915 @default.
- W2352584037 cites W2104473127 @default.
- W2352584037 cites W2121312618 @default.
- W2352584037 cites W2129558307 @default.
- W2352584037 cites W2130434638 @default.
- W2352584037 cites W2131049245 @default.
- W2352584037 cites W2132969987 @default.
- W2352584037 cites W2142334255 @default.
- W2352584037 cites W2144081223 @default.
- W2352584037 cites W2150979451 @default.
- W2352584037 cites W2156889390 @default.
- W2352584037 cites W2157445553 @default.
- W2352584037 cites W2161981861 @default.
- W2352584037 cites W2266328638 @default.
- W2352584037 cites W2329289556 @default.
- W2352584037 doi "https://doi.org/10.1074/jbc.m116.724625" @default.
- W2352584037 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4938185" @default.
- W2352584037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27189945" @default.
- W2352584037 hasPublicationYear "2016" @default.
- W2352584037 type Work @default.
- W2352584037 sameAs 2352584037 @default.
- W2352584037 citedByCount "18" @default.
- W2352584037 countsByYear W23525840372017 @default.
- W2352584037 countsByYear W23525840372018 @default.
- W2352584037 countsByYear W23525840372019 @default.
- W2352584037 countsByYear W23525840372020 @default.
- W2352584037 countsByYear W23525840372021 @default.
- W2352584037 countsByYear W23525840372022 @default.
- W2352584037 countsByYear W23525840372023 @default.
- W2352584037 crossrefType "journal-article" @default.
- W2352584037 hasAuthorship W2352584037A5008496489 @default.
- W2352584037 hasAuthorship W2352584037A5040612727 @default.
- W2352584037 hasAuthorship W2352584037A5050932910 @default.
- W2352584037 hasAuthorship W2352584037A5061137007 @default.
- W2352584037 hasAuthorship W2352584037A5066940861 @default.
- W2352584037 hasAuthorship W2352584037A5067430639 @default.