Matches in SemOpenAlex for { <https://semopenalex.org/work/W2558443896> ?p ?o ?g. }
- W2558443896 endingPage "110" @default.
- W2558443896 startingPage "100" @default.
- W2558443896 abstract "This study describes image processing systems based on an artificial neural network to estimate tool wear. The Single Category-Based Classifier neural network was used to process tool image data. We present a method to determine the rate of tool wear based on image analysis, and discuss the evaluation of errors. Using the proposed algorithm, we made in Visual Basic the special Neural Wear software for analysis of the worn part of the cutting edge. For example, the image of worn edge was created determining the optimum setting of Neural Wear software to automatically indicate the wear area. The result of the analysis was the number of pixels that belonged to the worn area. Using these settings, we made an image analysis of edge wear for different working times. We used the calculated parameters of correlation between the number of pixels and VB index. Our results promise a good correlation between the new methods and the commonly used optically measured VB index, with an absolute mean relative error of 6.7% for the tools’ entire life range. Automatic detection of wear of the cutting edge can be useful in many applications; for example, in predicting tool life based on the current value of edge wear." @default.
- W2558443896 created "2016-12-08" @default.
- W2558443896 creator A5026837537 @default.
- W2558443896 creator A5039164714 @default.
- W2558443896 creator A5039427014 @default.
- W2558443896 creator A5066570575 @default.
- W2558443896 date "2017-05-01" @default.
- W2558443896 modified "2023-10-18" @default.
- W2558443896 title "Neural network approach for automatic image analysis of cutting edge wear" @default.
- W2558443896 cites W1904550445 @default.
- W2558443896 cites W1967133285 @default.
- W2558443896 cites W1971874375 @default.
- W2558443896 cites W1983632744 @default.
- W2558443896 cites W1992156898 @default.
- W2558443896 cites W1993863800 @default.
- W2558443896 cites W1995192396 @default.
- W2558443896 cites W1996231862 @default.
- W2558443896 cites W1996972963 @default.
- W2558443896 cites W1997214384 @default.
- W2558443896 cites W1997607933 @default.
- W2558443896 cites W1999314995 @default.
- W2558443896 cites W2000807377 @default.
- W2558443896 cites W2002661805 @default.
- W2558443896 cites W2003947476 @default.
- W2558443896 cites W2004738926 @default.
- W2558443896 cites W2007944861 @default.
- W2558443896 cites W2010556354 @default.
- W2558443896 cites W2010717817 @default.
- W2558443896 cites W2024409405 @default.
- W2558443896 cites W2025533943 @default.
- W2558443896 cites W2032596512 @default.
- W2558443896 cites W2034714775 @default.
- W2558443896 cites W2047932566 @default.
- W2558443896 cites W2055027897 @default.
- W2558443896 cites W2056719816 @default.
- W2558443896 cites W2058332079 @default.
- W2558443896 cites W2060333749 @default.
- W2558443896 cites W2065546086 @default.
- W2558443896 cites W2081664861 @default.
- W2558443896 cites W2081739372 @default.
- W2558443896 cites W2083107396 @default.
- W2558443896 cites W2083762679 @default.
- W2558443896 cites W2085269624 @default.
- W2558443896 cites W2091630995 @default.
- W2558443896 cites W2117720586 @default.
- W2558443896 cites W2121521940 @default.
- W2558443896 cites W2123276730 @default.
- W2558443896 cites W2125888905 @default.
- W2558443896 cites W2135700518 @default.
- W2558443896 cites W2144094032 @default.
- W2558443896 cites W2162807413 @default.
- W2558443896 cites W226566298 @default.
- W2558443896 cites W2280409760 @default.
- W2558443896 cites W2281173620 @default.
- W2558443896 cites W2284844485 @default.
- W2558443896 cites W2501950536 @default.
- W2558443896 cites W2510670265 @default.
- W2558443896 cites W4243012846 @default.
- W2558443896 cites W835977602 @default.
- W2558443896 doi "https://doi.org/10.1016/j.ymssp.2016.11.026" @default.
- W2558443896 hasPublicationYear "2017" @default.
- W2558443896 type Work @default.
- W2558443896 sameAs 2558443896 @default.
- W2558443896 citedByCount "72" @default.
- W2558443896 countsByYear W25584438962016 @default.
- W2558443896 countsByYear W25584438962017 @default.
- W2558443896 countsByYear W25584438962018 @default.
- W2558443896 countsByYear W25584438962019 @default.
- W2558443896 countsByYear W25584438962020 @default.
- W2558443896 countsByYear W25584438962021 @default.
- W2558443896 countsByYear W25584438962022 @default.
- W2558443896 countsByYear W25584438962023 @default.
- W2558443896 crossrefType "journal-article" @default.
- W2558443896 hasAuthorship W2558443896A5026837537 @default.
- W2558443896 hasAuthorship W2558443896A5039164714 @default.
- W2558443896 hasAuthorship W2558443896A5039427014 @default.
- W2558443896 hasAuthorship W2558443896A5066570575 @default.
- W2558443896 hasConcept C111919701 @default.
- W2558443896 hasConcept C115961682 @default.
- W2558443896 hasConcept C127413603 @default.
- W2558443896 hasConcept C146978453 @default.
- W2558443896 hasConcept C153180895 @default.
- W2558443896 hasConcept C154945302 @default.
- W2558443896 hasConcept C160633673 @default.
- W2558443896 hasConcept C162307627 @default.
- W2558443896 hasConcept C193536780 @default.
- W2558443896 hasConcept C199360897 @default.
- W2558443896 hasConcept C204323151 @default.
- W2558443896 hasConcept C2776450708 @default.
- W2558443896 hasConcept C2777904410 @default.
- W2558443896 hasConcept C2780383046 @default.
- W2558443896 hasConcept C31972630 @default.
- W2558443896 hasConcept C41008148 @default.
- W2558443896 hasConcept C50644808 @default.
- W2558443896 hasConcept C523214423 @default.
- W2558443896 hasConcept C78519656 @default.
- W2558443896 hasConcept C9417928 @default.
- W2558443896 hasConcept C98045186 @default.