Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565879877> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2565879877 abstract "This paper describes the application of convolutional neural networks (CNNs) to the identification and classification of ten classes of benthic macrofauna in high-resolution photomosaics captured on the Pacific continental shelf by an ROV. Each photomosaic was previously hand-annotated with the location and classification of each animal, providing a training set for the machine learning algorithms. These annotations are used to extract image patches around each contact, resulting in approximately 5000 image samples, which are supplemented with randomly selected image patches representing the background. The resulting corpus of data is used to train a series of convolutional neural networks in the Nvidia DIGITS and Google Tensorflow environments. Due to the relatively sparse nature of the training data set, a number of data augmentation approaches are used to increase the diversity of training data. The performance of the resulting algorithm is evaluated in three problem scenarios: first, classification of fauna in an image patch known to contain a target; second, classification of a given image patch as either background or non-background; and third, a single-pass combination of the two problems. The presented networks prove highly accurate at background/non-background segmentation with ∼ 96% accuracy. Fauna identification is less reliable at ∼ 89% accuracy, and unified segmentation and identification proves to be the most challenging at ∼88% accuracy." @default.
- W2565879877 created "2017-01-06" @default.
- W2565879877 creator A5016505426 @default.
- W2565879877 creator A5038179735 @default.
- W2565879877 date "2016-09-01" @default.
- W2565879877 modified "2023-10-08" @default.
- W2565879877 title "Deep learning for benthic fauna identification" @default.
- W2565879877 cites W1420009360 @default.
- W2565879877 cites W1536680647 @default.
- W2565879877 cites W1965718792 @default.
- W2565879877 cites W1990054309 @default.
- W2565879877 cites W2097117768 @default.
- W2565879877 cites W2097360361 @default.
- W2565879877 cites W2108598243 @default.
- W2565879877 cites W2112796928 @default.
- W2565879877 cites W2155893237 @default.
- W2565879877 cites W2158989892 @default.
- W2565879877 cites W2186155590 @default.
- W2565879877 cites W2292053894 @default.
- W2565879877 cites W2915431448 @default.
- W2565879877 cites W81068503 @default.
- W2565879877 cites W601771670 @default.
- W2565879877 doi "https://doi.org/10.1109/oceans.2016.7761146" @default.
- W2565879877 hasPublicationYear "2016" @default.
- W2565879877 type Work @default.
- W2565879877 sameAs 2565879877 @default.
- W2565879877 citedByCount "19" @default.
- W2565879877 countsByYear W25658798772018 @default.
- W2565879877 countsByYear W25658798772019 @default.
- W2565879877 countsByYear W25658798772020 @default.
- W2565879877 countsByYear W25658798772021 @default.
- W2565879877 countsByYear W25658798772022 @default.
- W2565879877 countsByYear W25658798772023 @default.
- W2565879877 crossrefType "proceedings-article" @default.
- W2565879877 hasAuthorship W2565879877A5016505426 @default.
- W2565879877 hasAuthorship W2565879877A5038179735 @default.
- W2565879877 hasConcept C108583219 @default.
- W2565879877 hasConcept C111368507 @default.
- W2565879877 hasConcept C116834253 @default.
- W2565879877 hasConcept C119857082 @default.
- W2565879877 hasConcept C125471540 @default.
- W2565879877 hasConcept C127313418 @default.
- W2565879877 hasConcept C154945302 @default.
- W2565879877 hasConcept C18903297 @default.
- W2565879877 hasConcept C41008148 @default.
- W2565879877 hasConcept C83042747 @default.
- W2565879877 hasConcept C86803240 @default.
- W2565879877 hasConceptScore W2565879877C108583219 @default.
- W2565879877 hasConceptScore W2565879877C111368507 @default.
- W2565879877 hasConceptScore W2565879877C116834253 @default.
- W2565879877 hasConceptScore W2565879877C119857082 @default.
- W2565879877 hasConceptScore W2565879877C125471540 @default.
- W2565879877 hasConceptScore W2565879877C127313418 @default.
- W2565879877 hasConceptScore W2565879877C154945302 @default.
- W2565879877 hasConceptScore W2565879877C18903297 @default.
- W2565879877 hasConceptScore W2565879877C41008148 @default.
- W2565879877 hasConceptScore W2565879877C83042747 @default.
- W2565879877 hasConceptScore W2565879877C86803240 @default.
- W2565879877 hasLocation W25658798771 @default.
- W2565879877 hasOpenAccess W2565879877 @default.
- W2565879877 hasPrimaryLocation W25658798771 @default.
- W2565879877 hasRelatedWork W2922457425 @default.
- W2565879877 hasRelatedWork W3014300295 @default.
- W2565879877 hasRelatedWork W3164822677 @default.
- W2565879877 hasRelatedWork W3215138031 @default.
- W2565879877 hasRelatedWork W4223943233 @default.
- W2565879877 hasRelatedWork W4225161397 @default.
- W2565879877 hasRelatedWork W4250304930 @default.
- W2565879877 hasRelatedWork W4299487748 @default.
- W2565879877 hasRelatedWork W4309045103 @default.
- W2565879877 hasRelatedWork W4312200629 @default.
- W2565879877 isParatext "false" @default.
- W2565879877 isRetracted "false" @default.
- W2565879877 magId "2565879877" @default.
- W2565879877 workType "article" @default.