Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585334141> ?p ?o ?g. }
- W2585334141 endingPage "297" @default.
- W2585334141 startingPage "286" @default.
- W2585334141 abstract "Leaf area index (LAI) is a key parameter for describing vegetation structures and is closely associated with vegetative photosynthesis and energy balance. The accurate retrieval of LAI is important when modeling biophysical processes of vegetation and the productivity of earth systems. The Random Forests (RF) method aggregates an ensemble of decision trees to improve the prediction accuracy and demonstrates a more robust capacity than other regression methods. This study evaluated the RF method for predicting grassland LAI using ground measurements and remote sensing data. Parameter optimization and variable reduction were conducted before model prediction. Two variable reduction methods were examined: the Variable Importance Value method and the principal component analysis (PCA) method. Finally, the sensitivity of RF to highly correlated variables was tested. The results showed that the RF parameters have a small effect on the performance of RF, and a satisfactory prediction was acquired with a root mean square error (RMSE) of 0.1956. The two variable reduction methods for RF prediction produced different results; variable reduction based on the Variable Importance Value method achieved nearly the same prediction accuracy with no reduced prediction, whereas variable reduction using the PCA method had an obviously degraded result that may have been caused by the loss of subtle variations and the fusion of noise information. After removing highly correlated variables, the relative variable importance remained steady, and the use of variables selected based on the best-performing vegetation indices performed better than the variables with all vegetation indices or those selected based on the most important one. The results in this study demonstrate the practical and powerful ability of the RF method in predicting grassland LAI, which can also be applied to the estimation of other vegetation traits as an alternative to conventional empirical regression models and the selection of relevant variables used in ecological models." @default.
- W2585334141 created "2017-02-10" @default.
- W2585334141 creator A5014291199 @default.
- W2585334141 creator A5028203797 @default.
- W2585334141 creator A5032804842 @default.
- W2585334141 creator A5036424895 @default.
- W2585334141 creator A5041575319 @default.
- W2585334141 creator A5090331790 @default.
- W2585334141 date "2017-02-01" @default.
- W2585334141 modified "2023-10-11" @default.
- W2585334141 title "Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China" @default.
- W2585334141 cites W1514009507 @default.
- W2585334141 cites W1966123034 @default.
- W2585334141 cites W1969000410 @default.
- W2585334141 cites W1979279626 @default.
- W2585334141 cites W1988195734 @default.
- W2585334141 cites W1998776407 @default.
- W2585334141 cites W2008352681 @default.
- W2585334141 cites W2012686349 @default.
- W2585334141 cites W2021794048 @default.
- W2585334141 cites W2026307199 @default.
- W2585334141 cites W2030078894 @default.
- W2585334141 cites W2033585087 @default.
- W2585334141 cites W2053585555 @default.
- W2585334141 cites W2063114804 @default.
- W2585334141 cites W2066612219 @default.
- W2585334141 cites W2066722804 @default.
- W2585334141 cites W2071128523 @default.
- W2585334141 cites W2072518837 @default.
- W2585334141 cites W2089441588 @default.
- W2585334141 cites W2090881403 @default.
- W2585334141 cites W2095464314 @default.
- W2585334141 cites W2095681882 @default.
- W2585334141 cites W2097110832 @default.
- W2585334141 cites W2117268279 @default.
- W2585334141 cites W2121538471 @default.
- W2585334141 cites W2125397877 @default.
- W2585334141 cites W2128405001 @default.
- W2585334141 cites W2132254275 @default.
- W2585334141 cites W2133506218 @default.
- W2585334141 cites W2145429786 @default.
- W2585334141 cites W2146851003 @default.
- W2585334141 cites W2149813070 @default.
- W2585334141 cites W2155261478 @default.
- W2585334141 cites W2156731172 @default.
- W2585334141 cites W2157144502 @default.
- W2585334141 cites W2160486837 @default.
- W2585334141 cites W2161548576 @default.
- W2585334141 cites W2161815745 @default.
- W2585334141 cites W2167869331 @default.
- W2585334141 cites W2171979590 @default.
- W2585334141 cites W2319245025 @default.
- W2585334141 cites W248389711 @default.
- W2585334141 cites W2911964244 @default.
- W2585334141 cites W4212883601 @default.
- W2585334141 cites W4238438318 @default.
- W2585334141 doi "https://doi.org/10.1016/s2095-3119(15)61303-x" @default.
- W2585334141 hasPublicationYear "2017" @default.
- W2585334141 type Work @default.
- W2585334141 sameAs 2585334141 @default.
- W2585334141 citedByCount "45" @default.
- W2585334141 countsByYear W25853341412017 @default.
- W2585334141 countsByYear W25853341412018 @default.
- W2585334141 countsByYear W25853341412019 @default.
- W2585334141 countsByYear W25853341412020 @default.
- W2585334141 countsByYear W25853341412021 @default.
- W2585334141 countsByYear W25853341412022 @default.
- W2585334141 countsByYear W25853341412023 @default.
- W2585334141 crossrefType "journal-article" @default.
- W2585334141 hasAuthorship W2585334141A5014291199 @default.
- W2585334141 hasAuthorship W2585334141A5028203797 @default.
- W2585334141 hasAuthorship W2585334141A5032804842 @default.
- W2585334141 hasAuthorship W2585334141A5036424895 @default.
- W2585334141 hasAuthorship W2585334141A5041575319 @default.
- W2585334141 hasAuthorship W2585334141A5090331790 @default.
- W2585334141 hasBestOaLocation W25853341411 @default.
- W2585334141 hasConcept C105795698 @default.
- W2585334141 hasConcept C119857082 @default.
- W2585334141 hasConcept C134306372 @default.
- W2585334141 hasConcept C139945424 @default.
- W2585334141 hasConcept C142724271 @default.
- W2585334141 hasConcept C152877465 @default.
- W2585334141 hasConcept C169258074 @default.
- W2585334141 hasConcept C182365436 @default.
- W2585334141 hasConcept C18903297 @default.
- W2585334141 hasConcept C205649164 @default.
- W2585334141 hasConcept C25989453 @default.
- W2585334141 hasConcept C27438332 @default.
- W2585334141 hasConcept C2775835988 @default.
- W2585334141 hasConcept C2776133958 @default.
- W2585334141 hasConcept C33923547 @default.
- W2585334141 hasConcept C39432304 @default.
- W2585334141 hasConcept C41008148 @default.
- W2585334141 hasConcept C48921125 @default.
- W2585334141 hasConcept C62649853 @default.
- W2585334141 hasConcept C71924100 @default.
- W2585334141 hasConcept C86803240 @default.
- W2585334141 hasConceptScore W2585334141C105795698 @default.