Matches in SemOpenAlex for { <https://semopenalex.org/work/W2606202671> ?p ?o ?g. }
- W2606202671 endingPage "127" @default.
- W2606202671 startingPage "107" @default.
- W2606202671 abstract "Cancer is the second leading cause of death, next only to heart disease, in both developed as well as developing countries. A major source of difficulty in addressing cancer as a disease is its bewildering variety, in that no two manifestations of cancer are alike, even when they occur in the same site. This makes cancer an ideal candidate for “personalized medicine” (also known as “precision medicine”). At present there are some high-quality public databases consisting of both molecular measurements of tumors, as well as clinical data on the patients. By applying machine learning methods to these databases, it is possible even for non-experimenters to generate plausible hypotheses that are supported by the data, which can then be validated on one or more independent data sets. A characteristic of cancer databases is that the number of measured features is many orders of magnitude larger than the number of samples. Therefore any machine learning algorithms must also perform feature selection, that is, elicit the most relevant or most predictive features from the large number of measured features. In this paper, some algorithms for sparse regression and sparse classification are reviewed, and their applications to endometrial and ovarian cancer are discussed." @default.
- W2606202671 created "2017-04-28" @default.
- W2606202671 creator A5089027398 @default.
- W2606202671 date "2017-01-01" @default.
- W2606202671 modified "2023-09-25" @default.
- W2606202671 title "Machine learning methods in computational cancer biology" @default.
- W2606202671 cites W1824815196 @default.
- W2606202671 cites W1987371344 @default.
- W2606202671 cites W1988414899 @default.
- W2606202671 cites W1992436001 @default.
- W2606202671 cites W1996989652 @default.
- W2606202671 cites W2002290921 @default.
- W2606202671 cites W2009741040 @default.
- W2606202671 cites W2010814322 @default.
- W2606202671 cites W2016558284 @default.
- W2606202671 cites W2018106070 @default.
- W2606202671 cites W2018913979 @default.
- W2606202671 cites W2020299413 @default.
- W2606202671 cites W2028781966 @default.
- W2606202671 cites W2032558547 @default.
- W2606202671 cites W2041615247 @default.
- W2606202671 cites W2046907549 @default.
- W2606202671 cites W2058186835 @default.
- W2606202671 cites W2058900572 @default.
- W2606202671 cites W2059542829 @default.
- W2606202671 cites W2087036932 @default.
- W2606202671 cites W2087220508 @default.
- W2606202671 cites W2089607969 @default.
- W2606202671 cites W2097780578 @default.
- W2606202671 cites W2098421558 @default.
- W2606202671 cites W2099911815 @default.
- W2606202671 cites W2109860416 @default.
- W2606202671 cites W2122825543 @default.
- W2606202671 cites W2123696077 @default.
- W2606202671 cites W2131593373 @default.
- W2606202671 cites W2138019504 @default.
- W2606202671 cites W2140817080 @default.
- W2606202671 cites W2141635226 @default.
- W2606202671 cites W2143426320 @default.
- W2606202671 cites W2155113800 @default.
- W2606202671 cites W2158160318 @default.
- W2606202671 cites W2158443418 @default.
- W2606202671 cites W2237035025 @default.
- W2606202671 cites W2254381768 @default.
- W2606202671 cites W2562162676 @default.
- W2606202671 cites W2601232721 @default.
- W2606202671 cites W2964129273 @default.
- W2606202671 cites W3103521600 @default.
- W2606202671 cites W4234698323 @default.
- W2606202671 doi "https://doi.org/10.1016/j.arcontrol.2017.03.007" @default.
- W2606202671 hasPublicationYear "2017" @default.
- W2606202671 type Work @default.
- W2606202671 sameAs 2606202671 @default.
- W2606202671 citedByCount "6" @default.
- W2606202671 countsByYear W26062026712019 @default.
- W2606202671 countsByYear W26062026712020 @default.
- W2606202671 countsByYear W26062026712021 @default.
- W2606202671 countsByYear W26062026712022 @default.
- W2606202671 crossrefType "journal-article" @default.
- W2606202671 hasAuthorship W2606202671A5089027398 @default.
- W2606202671 hasBestOaLocation W26062026711 @default.
- W2606202671 hasConcept C119857082 @default.
- W2606202671 hasConcept C121608353 @default.
- W2606202671 hasConcept C124101348 @default.
- W2606202671 hasConcept C126322002 @default.
- W2606202671 hasConcept C136197465 @default.
- W2606202671 hasConcept C148483581 @default.
- W2606202671 hasConcept C154945302 @default.
- W2606202671 hasConcept C32220436 @default.
- W2606202671 hasConcept C41008148 @default.
- W2606202671 hasConcept C60644358 @default.
- W2606202671 hasConcept C71924100 @default.
- W2606202671 hasConcept C81917197 @default.
- W2606202671 hasConcept C86803240 @default.
- W2606202671 hasConceptScore W2606202671C119857082 @default.
- W2606202671 hasConceptScore W2606202671C121608353 @default.
- W2606202671 hasConceptScore W2606202671C124101348 @default.
- W2606202671 hasConceptScore W2606202671C126322002 @default.
- W2606202671 hasConceptScore W2606202671C136197465 @default.
- W2606202671 hasConceptScore W2606202671C148483581 @default.
- W2606202671 hasConceptScore W2606202671C154945302 @default.
- W2606202671 hasConceptScore W2606202671C32220436 @default.
- W2606202671 hasConceptScore W2606202671C41008148 @default.
- W2606202671 hasConceptScore W2606202671C60644358 @default.
- W2606202671 hasConceptScore W2606202671C71924100 @default.
- W2606202671 hasConceptScore W2606202671C81917197 @default.
- W2606202671 hasConceptScore W2606202671C86803240 @default.
- W2606202671 hasFunder F4320306076 @default.
- W2606202671 hasFunder F4320308129 @default.
- W2606202671 hasLocation W26062026711 @default.
- W2606202671 hasOpenAccess W2606202671 @default.
- W2606202671 hasPrimaryLocation W26062026711 @default.
- W2606202671 hasRelatedWork W2973799232 @default.
- W2606202671 hasRelatedWork W3016925281 @default.
- W2606202671 hasRelatedWork W3174196512 @default.
- W2606202671 hasRelatedWork W3200179079 @default.
- W2606202671 hasRelatedWork W4212852473 @default.
- W2606202671 hasRelatedWork W4225307033 @default.