Matches in SemOpenAlex for { <https://semopenalex.org/work/W2632918601> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2632918601 endingPage "1586" @default.
- W2632918601 startingPage "1580" @default.
- W2632918601 abstract "There is a significant convergence of interests in the research community efforts to advance the development and application of software resources (capable of handling the relevant mathematical algorithms to provide scalable information) for solving data science problems. Anaconda is one of the many open source platforms that facilitate the use of open source programming languages (R, Python) for large‐scale data processing, predictive analytics, and scientific computing. The environmental research community may choose to adapt the use of either of the R or the Python programming languages for analyzing the data science problems on the Anaconda platform. This study demonstrated the applications of using Scikit‐learn (a Python machine learning library package) on Anaconda platform for analyzing the in‐bus carbon dioxide concentrations by (i) importing the data into Spyder (Python 3.6) in Anaconda, (ii) performing an exploratory data analysis, (iii) performing dimensionality reduction through RandomForestRegressor feature selection, (iv) developing statistical regression models, and (v) generating regression decision tree models with DecisionTreeRegressor feature. The readers may adopt the methods (inclusive of the Python coding) discussed in this article to successfully address their own data science problems. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 1580–1586, 2017" @default.
- W2632918601 created "2017-06-30" @default.
- W2632918601 creator A5040946974 @default.
- W2632918601 creator A5081859881 @default.
- W2632918601 date "2017-10-31" @default.
- W2632918601 modified "2023-10-17" @default.
- W2632918601 title "Applications of Python to evaluate environmental data science problems" @default.
- W2632918601 cites W1985123014 @default.
- W2632918601 cites W1996752974 @default.
- W2632918601 cites W2016017644 @default.
- W2632918601 cites W2060515953 @default.
- W2632918601 cites W2088159155 @default.
- W2632918601 cites W2101866975 @default.
- W2632918601 cites W2106007644 @default.
- W2632918601 cites W2133688057 @default.
- W2632918601 cites W2164582852 @default.
- W2632918601 cites W2165972385 @default.
- W2632918601 cites W2168980456 @default.
- W2632918601 cites W2320003623 @default.
- W2632918601 cites W4232435927 @default.
- W2632918601 cites W4234192264 @default.
- W2632918601 cites W4242537540 @default.
- W2632918601 cites W4248556490 @default.
- W2632918601 cites W4250728792 @default.
- W2632918601 cites W4252210668 @default.
- W2632918601 cites W4252626082 @default.
- W2632918601 doi "https://doi.org/10.1002/ep.12786" @default.
- W2632918601 hasPublicationYear "2017" @default.
- W2632918601 type Work @default.
- W2632918601 sameAs 2632918601 @default.
- W2632918601 citedByCount "29" @default.
- W2632918601 countsByYear W26329186012018 @default.
- W2632918601 countsByYear W26329186012020 @default.
- W2632918601 countsByYear W26329186012021 @default.
- W2632918601 countsByYear W26329186012022 @default.
- W2632918601 countsByYear W26329186012023 @default.
- W2632918601 crossrefType "journal-article" @default.
- W2632918601 hasAuthorship W2632918601A5040946974 @default.
- W2632918601 hasAuthorship W2632918601A5081859881 @default.
- W2632918601 hasConcept C115903868 @default.
- W2632918601 hasConcept C124101348 @default.
- W2632918601 hasConcept C199360897 @default.
- W2632918601 hasConcept C2522767166 @default.
- W2632918601 hasConcept C2777904410 @default.
- W2632918601 hasConcept C3018397939 @default.
- W2632918601 hasConcept C41008148 @default.
- W2632918601 hasConcept C48044578 @default.
- W2632918601 hasConcept C519991488 @default.
- W2632918601 hasConcept C77088390 @default.
- W2632918601 hasConceptScore W2632918601C115903868 @default.
- W2632918601 hasConceptScore W2632918601C124101348 @default.
- W2632918601 hasConceptScore W2632918601C199360897 @default.
- W2632918601 hasConceptScore W2632918601C2522767166 @default.
- W2632918601 hasConceptScore W2632918601C2777904410 @default.
- W2632918601 hasConceptScore W2632918601C3018397939 @default.
- W2632918601 hasConceptScore W2632918601C41008148 @default.
- W2632918601 hasConceptScore W2632918601C48044578 @default.
- W2632918601 hasConceptScore W2632918601C519991488 @default.
- W2632918601 hasConceptScore W2632918601C77088390 @default.
- W2632918601 hasIssue "6" @default.
- W2632918601 hasLocation W26329186011 @default.
- W2632918601 hasOpenAccess W2632918601 @default.
- W2632918601 hasPrimaryLocation W26329186011 @default.
- W2632918601 hasRelatedWork W1699080303 @default.
- W2632918601 hasRelatedWork W1906486629 @default.
- W2632918601 hasRelatedWork W2557718140 @default.
- W2632918601 hasRelatedWork W3187193180 @default.
- W2632918601 hasRelatedWork W3201519406 @default.
- W2632918601 hasRelatedWork W4226323523 @default.
- W2632918601 hasRelatedWork W4287027380 @default.
- W2632918601 hasRelatedWork W67092138 @default.
- W2632918601 hasRelatedWork W106542691 @default.
- W2632918601 hasRelatedWork W4225687299 @default.
- W2632918601 hasVolume "36" @default.
- W2632918601 isParatext "false" @default.
- W2632918601 isRetracted "false" @default.
- W2632918601 magId "2632918601" @default.
- W2632918601 workType "article" @default.