Matches in SemOpenAlex for { <https://semopenalex.org/work/W2753174232> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2753174232 endingPage "87" @default.
- W2753174232 startingPage "79" @default.
- W2753174232 abstract "This article presents an efficient method for weakly-supervised organ segmentation. It consists in over-segmenting the images into object-like supervoxels. A single joint forest classifier is then trained on all the images, where (a) the supervoxel indices are used as labels for the voxels, (b) a joint node optimisation is done using training samples from all the images, and (c) in each leaf node, a distinct posterior distribution is stored per image. The result is a forest with a shared structure that efficiently encodes all the images in the dataset. The forest can be applied once on a given source image to obtain supervoxel label predictions for its voxels from all the other target images in the dataset by simply looking up the target’s distribution in the leaf nodes. The output is then regularised using majority voting within the boundaries of the source’s supervoxels. This yields sparse correspondences on an over-segmentation-based level in an unsupervised, efficient, and robust manner. Weak annotations can then be propagated to other images, extending the labelled set and allowing an organ label classification forest to be trained. We demonstrate the effectiveness of our approach on a dataset of 150 abdominal CT images where, starting from a small set of 10 images with scribbles, we perform weakly-supervised image segmentation of the kidneys, liver and spleen. Promising results are obtained." @default.
- W2753174232 created "2017-09-15" @default.
- W2753174232 creator A5005597709 @default.
- W2753174232 creator A5006461848 @default.
- W2753174232 creator A5007222325 @default.
- W2753174232 creator A5028053690 @default.
- W2753174232 creator A5032527419 @default.
- W2753174232 creator A5087008478 @default.
- W2753174232 date "2017-01-01" @default.
- W2753174232 modified "2023-10-14" @default.
- W2753174232 title "Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation" @default.
- W2753174232 cites W137456267 @default.
- W2753174232 cites W1544547617 @default.
- W2753174232 cites W1568207135 @default.
- W2753174232 cites W1573412753 @default.
- W2753174232 cites W1927251054 @default.
- W2753174232 cites W1999478155 @default.
- W2753174232 cites W2002754212 @default.
- W2753174232 cites W2035188186 @default.
- W2753174232 cites W2061629163 @default.
- W2753174232 cites W2088049833 @default.
- W2753174232 cites W2112301665 @default.
- W2753174232 cites W2119474464 @default.
- W2753174232 cites W2264747902 @default.
- W2753174232 cites W2285925437 @default.
- W2753174232 cites W2295160225 @default.
- W2753174232 cites W2460470859 @default.
- W2753174232 cites W2663586272 @default.
- W2753174232 cites W3092138472 @default.
- W2753174232 doi "https://doi.org/10.1007/978-3-319-67389-9_10" @default.
- W2753174232 hasPublicationYear "2017" @default.
- W2753174232 type Work @default.
- W2753174232 sameAs 2753174232 @default.
- W2753174232 citedByCount "4" @default.
- W2753174232 countsByYear W27531742322018 @default.
- W2753174232 countsByYear W27531742322019 @default.
- W2753174232 countsByYear W27531742322020 @default.
- W2753174232 countsByYear W27531742322022 @default.
- W2753174232 crossrefType "book-chapter" @default.
- W2753174232 hasAuthorship W2753174232A5005597709 @default.
- W2753174232 hasAuthorship W2753174232A5006461848 @default.
- W2753174232 hasAuthorship W2753174232A5007222325 @default.
- W2753174232 hasAuthorship W2753174232A5028053690 @default.
- W2753174232 hasAuthorship W2753174232A5032527419 @default.
- W2753174232 hasAuthorship W2753174232A5087008478 @default.
- W2753174232 hasBestOaLocation W27531742322 @default.
- W2753174232 hasConcept C124504099 @default.
- W2753174232 hasConcept C153180895 @default.
- W2753174232 hasConcept C154945302 @default.
- W2753174232 hasConcept C31972630 @default.
- W2753174232 hasConcept C34736171 @default.
- W2753174232 hasConcept C41008148 @default.
- W2753174232 hasConcept C54170458 @default.
- W2753174232 hasConcept C89600930 @default.
- W2753174232 hasConcept C95623464 @default.
- W2753174232 hasConceptScore W2753174232C124504099 @default.
- W2753174232 hasConceptScore W2753174232C153180895 @default.
- W2753174232 hasConceptScore W2753174232C154945302 @default.
- W2753174232 hasConceptScore W2753174232C31972630 @default.
- W2753174232 hasConceptScore W2753174232C34736171 @default.
- W2753174232 hasConceptScore W2753174232C41008148 @default.
- W2753174232 hasConceptScore W2753174232C54170458 @default.
- W2753174232 hasConceptScore W2753174232C89600930 @default.
- W2753174232 hasConceptScore W2753174232C95623464 @default.
- W2753174232 hasLocation W27531742321 @default.
- W2753174232 hasLocation W27531742322 @default.
- W2753174232 hasOpenAccess W2753174232 @default.
- W2753174232 hasPrimaryLocation W27531742321 @default.
- W2753174232 hasRelatedWork W1507266234 @default.
- W2753174232 hasRelatedWork W1669643531 @default.
- W2753174232 hasRelatedWork W1721780360 @default.
- W2753174232 hasRelatedWork W2036075313 @default.
- W2753174232 hasRelatedWork W2110230079 @default.
- W2753174232 hasRelatedWork W2117664411 @default.
- W2753174232 hasRelatedWork W2117933325 @default.
- W2753174232 hasRelatedWork W2122581818 @default.
- W2753174232 hasRelatedWork W2159066190 @default.
- W2753174232 hasRelatedWork W2739874619 @default.
- W2753174232 isParatext "false" @default.
- W2753174232 isRetracted "false" @default.
- W2753174232 magId "2753174232" @default.
- W2753174232 workType "book-chapter" @default.