Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760725627> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2760725627 abstract "Let $I(n):=int_0^1 [x^n+(1-x)^n]^frac1n dx.$ In this paper, we show that $I(n)= sum_0^infty frac{I_i}{n^i},nrightarrow infty$ and we compute $I_i, i =0..5$, obtained by polylog functions and Euler sums. As a corollary, we obtain explicit expressions for some integrals involving functions $ u^i, exp(-u), (1 +exp(-u))^j , ln(1 + exp(-u))^k$ . As another asymptotic result, let $S_0(z):=frac{Li_m(1)}{Li_m(1)-Li_m(z)}$, where $Li_m(z)$ is the polylog function. We provide the asymptotic behaviour of $S_n,nrightarrow infty$ where $S_n:=[z^n]S_0(z)$. This paper fits within the framework of analytic combinatorics." @default.
- W2760725627 created "2017-10-06" @default.
- W2760725627 creator A5058614381 @default.
- W2760725627 date "2017-09-25" @default.
- W2760725627 modified "2023-09-27" @default.
- W2760725627 title "Two applications of polylog functions and Euler sums" @default.
- W2760725627 cites W1563216928 @default.
- W2760725627 cites W2083779556 @default.
- W2760725627 cites W2340541605 @default.
- W2760725627 cites W2963881191 @default.
- W2760725627 hasPublicationYear "2017" @default.
- W2760725627 type Work @default.
- W2760725627 sameAs 2760725627 @default.
- W2760725627 citedByCount "2" @default.
- W2760725627 countsByYear W27607256272017 @default.
- W2760725627 countsByYear W27607256272018 @default.
- W2760725627 crossrefType "posted-content" @default.
- W2760725627 hasAuthorship W2760725627A5058614381 @default.
- W2760725627 hasConcept C114614502 @default.
- W2760725627 hasConcept C121332964 @default.
- W2760725627 hasConcept C134306372 @default.
- W2760725627 hasConcept C14036430 @default.
- W2760725627 hasConcept C196102512 @default.
- W2760725627 hasConcept C2780012671 @default.
- W2760725627 hasConcept C33923547 @default.
- W2760725627 hasConcept C37914503 @default.
- W2760725627 hasConcept C38409319 @default.
- W2760725627 hasConcept C62884695 @default.
- W2760725627 hasConcept C768646 @default.
- W2760725627 hasConcept C78458016 @default.
- W2760725627 hasConcept C86803240 @default.
- W2760725627 hasConcept C93082080 @default.
- W2760725627 hasConceptScore W2760725627C114614502 @default.
- W2760725627 hasConceptScore W2760725627C121332964 @default.
- W2760725627 hasConceptScore W2760725627C134306372 @default.
- W2760725627 hasConceptScore W2760725627C14036430 @default.
- W2760725627 hasConceptScore W2760725627C196102512 @default.
- W2760725627 hasConceptScore W2760725627C2780012671 @default.
- W2760725627 hasConceptScore W2760725627C33923547 @default.
- W2760725627 hasConceptScore W2760725627C37914503 @default.
- W2760725627 hasConceptScore W2760725627C38409319 @default.
- W2760725627 hasConceptScore W2760725627C62884695 @default.
- W2760725627 hasConceptScore W2760725627C768646 @default.
- W2760725627 hasConceptScore W2760725627C78458016 @default.
- W2760725627 hasConceptScore W2760725627C86803240 @default.
- W2760725627 hasConceptScore W2760725627C93082080 @default.
- W2760725627 hasLocation W27607256271 @default.
- W2760725627 hasOpenAccess W2760725627 @default.
- W2760725627 hasPrimaryLocation W27607256271 @default.
- W2760725627 hasRelatedWork W1988113394 @default.
- W2760725627 hasRelatedWork W2010065109 @default.
- W2760725627 hasRelatedWork W2014355659 @default.
- W2760725627 hasRelatedWork W2035266852 @default.
- W2760725627 hasRelatedWork W2137612104 @default.
- W2760725627 hasRelatedWork W2167318568 @default.
- W2760725627 hasRelatedWork W2257378517 @default.
- W2760725627 hasRelatedWork W2555789848 @default.
- W2760725627 hasRelatedWork W2619392896 @default.
- W2760725627 hasRelatedWork W2754699279 @default.
- W2760725627 hasRelatedWork W2809564563 @default.
- W2760725627 hasRelatedWork W2949304030 @default.
- W2760725627 hasRelatedWork W2949764779 @default.
- W2760725627 hasRelatedWork W2963337410 @default.
- W2760725627 hasRelatedWork W2991131576 @default.
- W2760725627 hasRelatedWork W2995822835 @default.
- W2760725627 hasRelatedWork W3063392853 @default.
- W2760725627 hasRelatedWork W3103409668 @default.
- W2760725627 hasRelatedWork W3105759911 @default.
- W2760725627 hasRelatedWork W3209733990 @default.
- W2760725627 isParatext "false" @default.
- W2760725627 isRetracted "false" @default.
- W2760725627 magId "2760725627" @default.
- W2760725627 workType "article" @default.