Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783395660> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2783395660 endingPage "11" @default.
- W2783395660 startingPage "1" @default.
- W2783395660 abstract "Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost and complexity of the classifier and improves its reliability for prediction of a new class of samples.The present study used hybrid particle swarm optimization and genetic algorithms for gene selection and a fuzzy support vector machine (SVM) as the classifier. Fuzzy logic is used to infer the importance of each sample in the training phase and decrease the outlier sensitivity of the system to increase the ability to generalize the classifier. A decision-tree algorithm was applied to the most frequent genes to develop a set of rules for each type of cancer. This improved the abilities of the algorithm by finding the best parameters for the classifier during the training phase without the need for trial-and-error by the user. The proposed approach was tested on four benchmark gene expression profiles.Good results have been demonstrated for the proposed algorithm. The classification accuracy for leukemia data is 100%, for colon cancer is 96.67% and for breast cancer is 98%. The results show that the best kernel used in training the SVM classifier is the radial basis function.The experimental results show that the proposed algorithm can decrease the dimensionality of the dataset, determine the most informative gene subset, and improve classification accuracy using the optimal parameters of the classifier with no user interface." @default.
- W2783395660 created "2018-01-26" @default.
- W2783395660 creator A5010844025 @default.
- W2783395660 creator A5035978702 @default.
- W2783395660 creator A5084380196 @default.
- W2783395660 date "2018-03-15" @default.
- W2783395660 modified "2023-09-23" @default.
- W2783395660 title "Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine." @default.
- W2783395660 cites W1480891950 @default.
- W2783395660 cites W1968167115 @default.
- W2783395660 cites W1970032027 @default.
- W2783395660 cites W1970156673 @default.
- W2783395660 cites W1979691979 @default.
- W2783395660 cites W1983451318 @default.
- W2783395660 cites W1994807229 @default.
- W2783395660 cites W2001710803 @default.
- W2783395660 cites W2019942604 @default.
- W2783395660 cites W2030363461 @default.
- W2783395660 cites W2030958510 @default.
- W2783395660 cites W2046624437 @default.
- W2783395660 cites W2087684630 @default.
- W2783395660 cites W2109363337 @default.
- W2783395660 cites W2121141592 @default.
- W2783395660 cites W2127544153 @default.
- W2783395660 cites W2134837462 @default.
- W2783395660 cites W2137349930 @default.
- W2783395660 cites W2139109103 @default.
- W2783395660 cites W2150630892 @default.
- W2783395660 cites W2162686456 @default.
- W2783395660 cites W2164531580 @default.
- W2783395660 cites W2168561598 @default.
- W2783395660 cites W4246697467 @default.
- W2783395660 cites W50145612 @default.
- W2783395660 cites W2104921948 @default.
- W2783395660 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5840891" @default.
- W2783395660 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29535919" @default.
- W2783395660 hasPublicationYear "2018" @default.
- W2783395660 type Work @default.
- W2783395660 sameAs 2783395660 @default.
- W2783395660 citedByCount "2" @default.
- W2783395660 countsByYear W27833956602019 @default.
- W2783395660 crossrefType "journal-article" @default.
- W2783395660 hasAuthorship W2783395660A5010844025 @default.
- W2783395660 hasAuthorship W2783395660A5035978702 @default.
- W2783395660 hasAuthorship W2783395660A5084380196 @default.
- W2783395660 hasConcept C111030470 @default.
- W2783395660 hasConcept C11413529 @default.
- W2783395660 hasConcept C119857082 @default.
- W2783395660 hasConcept C12267149 @default.
- W2783395660 hasConcept C124101348 @default.
- W2783395660 hasConcept C148483581 @default.
- W2783395660 hasConcept C153180895 @default.
- W2783395660 hasConcept C154945302 @default.
- W2783395660 hasConcept C41008148 @default.
- W2783395660 hasConcept C85617194 @default.
- W2783395660 hasConcept C95623464 @default.
- W2783395660 hasConceptScore W2783395660C111030470 @default.
- W2783395660 hasConceptScore W2783395660C11413529 @default.
- W2783395660 hasConceptScore W2783395660C119857082 @default.
- W2783395660 hasConceptScore W2783395660C12267149 @default.
- W2783395660 hasConceptScore W2783395660C124101348 @default.
- W2783395660 hasConceptScore W2783395660C148483581 @default.
- W2783395660 hasConceptScore W2783395660C153180895 @default.
- W2783395660 hasConceptScore W2783395660C154945302 @default.
- W2783395660 hasConceptScore W2783395660C41008148 @default.
- W2783395660 hasConceptScore W2783395660C85617194 @default.
- W2783395660 hasConceptScore W2783395660C95623464 @default.
- W2783395660 hasIssue "1" @default.
- W2783395660 hasLocation W27833956601 @default.
- W2783395660 hasOpenAccess W2783395660 @default.
- W2783395660 hasPrimaryLocation W27833956601 @default.
- W2783395660 hasRelatedWork W1489281615 @default.
- W2783395660 hasRelatedWork W2041636156 @default.
- W2783395660 hasRelatedWork W2120008580 @default.
- W2783395660 hasRelatedWork W2160451891 @default.
- W2783395660 hasRelatedWork W2166303055 @default.
- W2783395660 hasRelatedWork W3105251098 @default.
- W2783395660 hasRelatedWork W3200179079 @default.
- W2783395660 hasRelatedWork W3200612453 @default.
- W2783395660 hasRelatedWork W635603759 @default.
- W2783395660 hasRelatedWork W2345184372 @default.
- W2783395660 hasVolume "8" @default.
- W2783395660 isParatext "false" @default.
- W2783395660 isRetracted "false" @default.
- W2783395660 magId "2783395660" @default.
- W2783395660 workType "article" @default.