Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801633237> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2801633237 endingPage "1699" @default.
- W2801633237 startingPage "1687" @default.
- W2801633237 abstract "Reliable operations of power transformers are necessary for effective transmission and distribution of power supply. During normal functions of the power transformer, distinct types of faults occurs due to insulation failure, oil aging products, overheating of windings, etc., affect the continuity of power supply thus leading to serious economic losses. To avoid interruptions in the power supply, various software fault diagnosis approaches are developed to detect faults in the power transformer and eliminate the impacts. SVM and SVM-SMO are the software fault diagnostic techniques developed in this paper for the continuous monitoring and analysis of faults in the power transformer. The SVM algorithm is faster, conceptually simple and easy to implement with better scaling properties for few training samples. The performances of SVM for large training samples are complex, subtle and difficult to implement. In order to obtain better fault diagnosis of large training data, SVM is optimized with SMO technique to achieve high interpretation accuracy in fault analysis of power transformer. The proposed methods use Dissolved Gas-in-oil Analysis (DGA) data set obtained from 500 KV main transformers of Pingguo Substation in South China Electric Power Company. DGA is an important tool for diagnosis and detection of incipient faults in the power transformers. The Gas Chromatograph (GC) is one of the traditional methods of DGA, utilized to choose the most appropriate gas signatures dissolved in transformer oil to detect types of faults in the transformer. The simulations are carried out in MATLAB software with an Intel core 3 processor with speed of 3 GHZ and 2 GB RAM PC. The results obtained by optimized SVM and SVM-SMO are compared with the existing SVM classification techniques. The test results indicate that the SVM-SMO approach significantly improve the classification accuracy and computational time for power transformer fault classification." @default.
- W2801633237 created "2018-05-17" @default.
- W2801633237 creator A5007508844 @default.
- W2801633237 creator A5051889791 @default.
- W2801633237 date "2013-08-20" @default.
- W2801633237 modified "2023-09-27" @default.
- W2801633237 title "IMPLEMENTATION OF SVM USING SEQUENTIAL MINIMAL OPTIMIZATION FOR POWER TRANSFORMER FAULT ANALYSIS USING DGA" @default.
- W2801633237 doi "https://doi.org/10.24297/ijct.v10i5.4153" @default.
- W2801633237 hasPublicationYear "2013" @default.
- W2801633237 type Work @default.
- W2801633237 sameAs 2801633237 @default.
- W2801633237 citedByCount "1" @default.
- W2801633237 countsByYear W28016332372015 @default.
- W2801633237 crossrefType "journal-article" @default.
- W2801633237 hasAuthorship W2801633237A5007508844 @default.
- W2801633237 hasAuthorship W2801633237A5051889791 @default.
- W2801633237 hasBestOaLocation W28016332371 @default.
- W2801633237 hasConcept C111919701 @default.
- W2801633237 hasConcept C119599485 @default.
- W2801633237 hasConcept C12267149 @default.
- W2801633237 hasConcept C127413603 @default.
- W2801633237 hasConcept C154945302 @default.
- W2801633237 hasConcept C165801399 @default.
- W2801633237 hasConcept C181335627 @default.
- W2801633237 hasConcept C199360897 @default.
- W2801633237 hasConcept C200601418 @default.
- W2801633237 hasConcept C2777904410 @default.
- W2801633237 hasConcept C2780365114 @default.
- W2801633237 hasConcept C41008148 @default.
- W2801633237 hasConcept C66322947 @default.
- W2801633237 hasConcept C81818771 @default.
- W2801633237 hasConceptScore W2801633237C111919701 @default.
- W2801633237 hasConceptScore W2801633237C119599485 @default.
- W2801633237 hasConceptScore W2801633237C12267149 @default.
- W2801633237 hasConceptScore W2801633237C127413603 @default.
- W2801633237 hasConceptScore W2801633237C154945302 @default.
- W2801633237 hasConceptScore W2801633237C165801399 @default.
- W2801633237 hasConceptScore W2801633237C181335627 @default.
- W2801633237 hasConceptScore W2801633237C199360897 @default.
- W2801633237 hasConceptScore W2801633237C200601418 @default.
- W2801633237 hasConceptScore W2801633237C2777904410 @default.
- W2801633237 hasConceptScore W2801633237C2780365114 @default.
- W2801633237 hasConceptScore W2801633237C41008148 @default.
- W2801633237 hasConceptScore W2801633237C66322947 @default.
- W2801633237 hasConceptScore W2801633237C81818771 @default.
- W2801633237 hasIssue "5" @default.
- W2801633237 hasLocation W28016332371 @default.
- W2801633237 hasOpenAccess W2801633237 @default.
- W2801633237 hasPrimaryLocation W28016332371 @default.
- W2801633237 hasRelatedWork W2086084539 @default.
- W2801633237 hasRelatedWork W2090806460 @default.
- W2801633237 hasRelatedWork W2111520251 @default.
- W2801633237 hasRelatedWork W2349463981 @default.
- W2801633237 hasRelatedWork W2360032242 @default.
- W2801633237 hasRelatedWork W2391309217 @default.
- W2801633237 hasRelatedWork W2605250934 @default.
- W2801633237 hasRelatedWork W2772231998 @default.
- W2801633237 hasRelatedWork W3209490197 @default.
- W2801633237 hasRelatedWork W2116778483 @default.
- W2801633237 hasVolume "10" @default.
- W2801633237 isParatext "false" @default.
- W2801633237 isRetracted "false" @default.
- W2801633237 magId "2801633237" @default.
- W2801633237 workType "article" @default.