Matches in SemOpenAlex for { <https://semopenalex.org/work/W28176266> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W28176266 endingPage "404" @default.
- W28176266 startingPage "395" @default.
- W28176266 abstract "This paper demonstrates how empirical copulas can be used to describe and model spatial dependence structures of real-world environmental datasets in the purest form and how such a copula model can be employed as the underlying structure for interpolation and associated uncertainty estimates. Using copulas, the dependence of multivariate distributions is modelled by the joint cumulative distribution of the variables using uniform marginal distribution functions. The uniform marginal distributions are the effect of transforming the marginal distributions monotonically by using the ranks of the variables. Due to the uniform marginal distributions, copulas express the dependence structure of the variables independent of the variables’ marginal distributions which means that copulas display interdependence between variables in its purest form. This property also means that marginal distributions of the original data have no influence on the spatial dependence structure and can not “cover up” parts of the spatial dependence structure. Additionally, differences in the degree of dependence between different quantiles of the variables are readily identified by the shape of the contours of an empirical copula density. Regarding the quantification of uncertainties, copulas offer a significant advantage: the full distribution function of the interpolated parameter at every interpolation point is available. The magnitude of uncertainty does not depend on the density of the observation network only, but also on the magnitude of the measurements as well as on the gradient of the magnitude of the measurements. That means for the same configuration of the observation network, interpolating two events with very similar marginal distribution, the confidence intervals look significantly different for both events." @default.
- W28176266 created "2016-06-24" @default.
- W28176266 creator A5011101896 @default.
- W28176266 creator A5012677271 @default.
- W28176266 creator A5086247640 @default.
- W28176266 date "2010-01-01" @default.
- W28176266 modified "2023-10-18" @default.
- W28176266 title "Application of Copulas in Geostatistics" @default.
- W28176266 cites W1636828051 @default.
- W28176266 cites W1657787756 @default.
- W28176266 cites W2005965987 @default.
- W28176266 cites W2070266204 @default.
- W28176266 cites W2507039649 @default.
- W28176266 doi "https://doi.org/10.1007/978-90-481-2322-3_34" @default.
- W28176266 hasPublicationYear "2010" @default.
- W28176266 type Work @default.
- W28176266 sameAs 28176266 @default.
- W28176266 citedByCount "7" @default.
- W28176266 countsByYear W281762662013 @default.
- W28176266 countsByYear W281762662014 @default.
- W28176266 countsByYear W281762662016 @default.
- W28176266 countsByYear W281762662018 @default.
- W28176266 countsByYear W281762662021 @default.
- W28176266 crossrefType "book-chapter" @default.
- W28176266 hasAuthorship W28176266A5011101896 @default.
- W28176266 hasAuthorship W28176266A5012677271 @default.
- W28176266 hasAuthorship W28176266A5086247640 @default.
- W28176266 hasConcept C103784038 @default.
- W28176266 hasConcept C105795698 @default.
- W28176266 hasConcept C118671147 @default.
- W28176266 hasConcept C121332964 @default.
- W28176266 hasConcept C121864883 @default.
- W28176266 hasConcept C122123141 @default.
- W28176266 hasConcept C134306372 @default.
- W28176266 hasConcept C138695830 @default.
- W28176266 hasConcept C149782125 @default.
- W28176266 hasConcept C165216359 @default.
- W28176266 hasConcept C17618745 @default.
- W28176266 hasConcept C18653775 @default.
- W28176266 hasConcept C197055811 @default.
- W28176266 hasConcept C28826006 @default.
- W28176266 hasConcept C33923547 @default.
- W28176266 hasConcept C64341305 @default.
- W28176266 hasConcept C72169020 @default.
- W28176266 hasConceptScore W28176266C103784038 @default.
- W28176266 hasConceptScore W28176266C105795698 @default.
- W28176266 hasConceptScore W28176266C118671147 @default.
- W28176266 hasConceptScore W28176266C121332964 @default.
- W28176266 hasConceptScore W28176266C121864883 @default.
- W28176266 hasConceptScore W28176266C122123141 @default.
- W28176266 hasConceptScore W28176266C134306372 @default.
- W28176266 hasConceptScore W28176266C138695830 @default.
- W28176266 hasConceptScore W28176266C149782125 @default.
- W28176266 hasConceptScore W28176266C165216359 @default.
- W28176266 hasConceptScore W28176266C17618745 @default.
- W28176266 hasConceptScore W28176266C18653775 @default.
- W28176266 hasConceptScore W28176266C197055811 @default.
- W28176266 hasConceptScore W28176266C28826006 @default.
- W28176266 hasConceptScore W28176266C33923547 @default.
- W28176266 hasConceptScore W28176266C64341305 @default.
- W28176266 hasConceptScore W28176266C72169020 @default.
- W28176266 hasLocation W281762661 @default.
- W28176266 hasOpenAccess W28176266 @default.
- W28176266 hasPrimaryLocation W281762661 @default.
- W28176266 hasRelatedWork W1990836375 @default.
- W28176266 hasRelatedWork W2000033743 @default.
- W28176266 hasRelatedWork W2000574122 @default.
- W28176266 hasRelatedWork W2021873876 @default.
- W28176266 hasRelatedWork W2065711427 @default.
- W28176266 hasRelatedWork W2885359318 @default.
- W28176266 hasRelatedWork W3125128924 @default.
- W28176266 hasRelatedWork W4205410784 @default.
- W28176266 hasRelatedWork W4229037299 @default.
- W28176266 hasRelatedWork W4317884027 @default.
- W28176266 isParatext "false" @default.
- W28176266 isRetracted "false" @default.
- W28176266 magId "28176266" @default.
- W28176266 workType "book-chapter" @default.