Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885457369> ?p ?o ?g. }
- W2885457369 endingPage "287" @default.
- W2885457369 startingPage "278" @default.
- W2885457369 abstract "Background: Various kind of medical imaging modalities are available for providing noninvasive view and for analyzing any pathological symptoms of human beings. Different noise may appear in those modalities at the time of acquisition, transmission, scanning, or at the time of storing. The removal of noises from the digital medical images without losing any inherent features is always considered a challenging task because a successful diagnosis relies on them. Numerous techniques have been proposed to fulfill this objective, and each having their own benefits and limitations. Discussion: In this comprehensive review article, more than 65 research articles are investigated to illustrate the applications of Artificial Neural Networks (ANN) in the field of biomedical image denoising. In particular, the zest of this article is to highlight the hybridized filtering model using nature-inspired algorithms and artificial neural networks for suppression of noise. Various other techniques, such as fixed filter, linear adaptive filters and gradient descent learning based neural network filter are also included. Conclusion: This article envisages how to train ANN using derivative free nature-inspired algorithms, and its performance in various medical images modalities and noise conditions." @default.
- W2885457369 created "2018-08-22" @default.
- W2885457369 creator A5021971352 @default.
- W2885457369 creator A5062946231 @default.
- W2885457369 date "2020-05-07" @default.
- W2885457369 modified "2023-09-27" @default.
- W2885457369 title "A Comprehensive Review on Nature Inspired Neural Network based Adaptive Filter for Eliminating Noise in Medical Images" @default.
- W2885457369 cites W1577517492 @default.
- W2885457369 cites W1794468867 @default.
- W2885457369 cites W1849953863 @default.
- W2885457369 cites W1966944999 @default.
- W2885457369 cites W1966997354 @default.
- W2885457369 cites W1967954759 @default.
- W2885457369 cites W1972868011 @default.
- W2885457369 cites W1974574995 @default.
- W2885457369 cites W1984077645 @default.
- W2885457369 cites W1984152361 @default.
- W2885457369 cites W1989672937 @default.
- W2885457369 cites W1999284878 @default.
- W2885457369 cites W200947403 @default.
- W2885457369 cites W2021915249 @default.
- W2885457369 cites W2026267944 @default.
- W2885457369 cites W2028074542 @default.
- W2885457369 cites W2028611962 @default.
- W2885457369 cites W2032013036 @default.
- W2885457369 cites W2034619479 @default.
- W2885457369 cites W2038292197 @default.
- W2885457369 cites W2038969653 @default.
- W2885457369 cites W2050546928 @default.
- W2885457369 cites W2052858657 @default.
- W2885457369 cites W2056671368 @default.
- W2885457369 cites W2069185367 @default.
- W2885457369 cites W2072757048 @default.
- W2885457369 cites W2076408892 @default.
- W2885457369 cites W2079673573 @default.
- W2885457369 cites W2080823287 @default.
- W2885457369 cites W2081000264 @default.
- W2885457369 cites W2096798358 @default.
- W2885457369 cites W2104472666 @default.
- W2885457369 cites W2104766217 @default.
- W2885457369 cites W2108201967 @default.
- W2885457369 cites W2109785322 @default.
- W2885457369 cites W2110760339 @default.
- W2885457369 cites W2138018102 @default.
- W2885457369 cites W2144399465 @default.
- W2885457369 cites W2149693718 @default.
- W2885457369 cites W2150427434 @default.
- W2885457369 cites W2150530698 @default.
- W2885457369 cites W2151525510 @default.
- W2885457369 cites W2158193493 @default.
- W2885457369 cites W2165994423 @default.
- W2885457369 cites W2172055358 @default.
- W2885457369 cites W2187224205 @default.
- W2885457369 cites W2308113268 @default.
- W2885457369 cites W2342690071 @default.
- W2885457369 cites W2346700178 @default.
- W2885457369 cites W2398394949 @default.
- W2885457369 cites W2461906487 @default.
- W2885457369 cites W2515050134 @default.
- W2885457369 cites W2531003736 @default.
- W2885457369 cites W2543147290 @default.
- W2885457369 cites W2558912158 @default.
- W2885457369 cites W2558936076 @default.
- W2885457369 cites W2560658395 @default.
- W2885457369 cites W2714208781 @default.
- W2885457369 cites W2770478660 @default.
- W2885457369 cites W1990239493 @default.
- W2885457369 cites W2005288536 @default.
- W2885457369 doi "https://doi.org/10.2174/1573405614666180801113345" @default.
- W2885457369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32410531" @default.
- W2885457369 hasPublicationYear "2020" @default.
- W2885457369 type Work @default.
- W2885457369 sameAs 2885457369 @default.
- W2885457369 citedByCount "10" @default.
- W2885457369 countsByYear W28854573692020 @default.
- W2885457369 countsByYear W28854573692021 @default.
- W2885457369 countsByYear W28854573692022 @default.
- W2885457369 countsByYear W28854573692023 @default.
- W2885457369 crossrefType "journal-article" @default.
- W2885457369 hasAuthorship W2885457369A5021971352 @default.
- W2885457369 hasAuthorship W2885457369A5062946231 @default.
- W2885457369 hasConcept C102248274 @default.
- W2885457369 hasConcept C106131492 @default.
- W2885457369 hasConcept C11413529 @default.
- W2885457369 hasConcept C115961682 @default.
- W2885457369 hasConcept C119857082 @default.
- W2885457369 hasConcept C144024400 @default.
- W2885457369 hasConcept C153180895 @default.
- W2885457369 hasConcept C154945302 @default.
- W2885457369 hasConcept C163294075 @default.
- W2885457369 hasConcept C2779903281 @default.
- W2885457369 hasConcept C31972630 @default.
- W2885457369 hasConcept C36289849 @default.
- W2885457369 hasConcept C41008148 @default.
- W2885457369 hasConcept C50644808 @default.
- W2885457369 hasConcept C99498987 @default.
- W2885457369 hasConceptScore W2885457369C102248274 @default.
- W2885457369 hasConceptScore W2885457369C106131492 @default.