Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897198596> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2897198596 endingPage "1865" @default.
- W2897198596 startingPage "1856" @default.
- W2897198596 abstract "Internet of Things (IoT) technology has been pervasively applied to environmental monitoring, due to the advantages of low cost and flexible deployment of IoT enabled systems. In many large-scale IoT systems, accurate and efficient data sampling and reconstruction is among the most critical requirements, since this can relieve the data rate of trunk link for data uploading while ensure data accuracy. To address the related challenges, we have proposed an unmanned aerial vehicle (UAV) enabled spatial data sampling scheme in this paper using denoising autoencoder (DAE) neural network. More specifically, a UAV-enabled edge-cloud collaborative IoT system architecture is first developed for data processing in large-scale IoT monitoring systems, where UAV is utilized as mobile edge computing device. Based on this system architecture, the UAV-enabled spatial data sampling scheme is further proposed, where the wireless sensor nodes of large-scale IoT systems are clustered by a newly developed bounded-size $boldsymbol K$ -means clustering algorithm. A neural network model, i.e., DAE, is applied to each cluster for data sampling and reconstruction, by exploitation of both linear and nonlinear spatial correlation among data samples. Simulations have been conducted and the results indicate that the proposed scheme has improved data reconstruction accuracy under the sampling ratio without introducing extra complexity, as compared to the compressive sensing-based method." @default.
- W2897198596 created "2018-10-26" @default.
- W2897198596 creator A5041270670 @default.
- W2897198596 creator A5065443071 @default.
- W2897198596 creator A5072355923 @default.
- W2897198596 date "2019-04-01" @default.
- W2897198596 modified "2023-09-29" @default.
- W2897198596 title "UAV-Enabled Spatial Data Sampling in Large-Scale IoT Systems Using Denoising Autoencoder Neural Network" @default.
- W2897198596 cites W1973742258 @default.
- W2897198596 cites W2011452458 @default.
- W2897198596 cites W2025768430 @default.
- W2897198596 cites W2117413196 @default.
- W2897198596 cites W2123241700 @default.
- W2897198596 cites W2168745297 @default.
- W2897198596 cites W2318133070 @default.
- W2897198596 cites W2472333518 @default.
- W2897198596 cites W2532521045 @default.
- W2897198596 cites W2569901261 @default.
- W2897198596 cites W2604830243 @default.
- W2897198596 cites W2608009372 @default.
- W2897198596 cites W2609280828 @default.
- W2897198596 cites W2758890981 @default.
- W2897198596 cites W2762422340 @default.
- W2897198596 cites W2784892436 @default.
- W2897198596 cites W4240490386 @default.
- W2897198596 doi "https://doi.org/10.1109/jiot.2018.2876695" @default.
- W2897198596 hasPublicationYear "2019" @default.
- W2897198596 type Work @default.
- W2897198596 sameAs 2897198596 @default.
- W2897198596 citedByCount "49" @default.
- W2897198596 countsByYear W28971985962017 @default.
- W2897198596 countsByYear W28971985962019 @default.
- W2897198596 countsByYear W28971985962020 @default.
- W2897198596 countsByYear W28971985962021 @default.
- W2897198596 countsByYear W28971985962022 @default.
- W2897198596 countsByYear W28971985962023 @default.
- W2897198596 crossrefType "journal-article" @default.
- W2897198596 hasAuthorship W2897198596A5041270670 @default.
- W2897198596 hasAuthorship W2897198596A5065443071 @default.
- W2897198596 hasAuthorship W2897198596A5072355923 @default.
- W2897198596 hasConcept C101738243 @default.
- W2897198596 hasConcept C106131492 @default.
- W2897198596 hasConcept C119857082 @default.
- W2897198596 hasConcept C121332964 @default.
- W2897198596 hasConcept C124101348 @default.
- W2897198596 hasConcept C140779682 @default.
- W2897198596 hasConcept C153180895 @default.
- W2897198596 hasConcept C154945302 @default.
- W2897198596 hasConcept C163294075 @default.
- W2897198596 hasConcept C2778755073 @default.
- W2897198596 hasConcept C31972630 @default.
- W2897198596 hasConcept C41008148 @default.
- W2897198596 hasConcept C50644808 @default.
- W2897198596 hasConcept C62520636 @default.
- W2897198596 hasConceptScore W2897198596C101738243 @default.
- W2897198596 hasConceptScore W2897198596C106131492 @default.
- W2897198596 hasConceptScore W2897198596C119857082 @default.
- W2897198596 hasConceptScore W2897198596C121332964 @default.
- W2897198596 hasConceptScore W2897198596C124101348 @default.
- W2897198596 hasConceptScore W2897198596C140779682 @default.
- W2897198596 hasConceptScore W2897198596C153180895 @default.
- W2897198596 hasConceptScore W2897198596C154945302 @default.
- W2897198596 hasConceptScore W2897198596C163294075 @default.
- W2897198596 hasConceptScore W2897198596C2778755073 @default.
- W2897198596 hasConceptScore W2897198596C31972630 @default.
- W2897198596 hasConceptScore W2897198596C41008148 @default.
- W2897198596 hasConceptScore W2897198596C50644808 @default.
- W2897198596 hasConceptScore W2897198596C62520636 @default.
- W2897198596 hasFunder F4320334593 @default.
- W2897198596 hasIssue "2" @default.
- W2897198596 hasLocation W28971985961 @default.
- W2897198596 hasOpenAccess W2897198596 @default.
- W2897198596 hasPrimaryLocation W28971985961 @default.
- W2897198596 hasRelatedWork W2592385986 @default.
- W2897198596 hasRelatedWork W2775464024 @default.
- W2897198596 hasRelatedWork W2785535669 @default.
- W2897198596 hasRelatedWork W2897995864 @default.
- W2897198596 hasRelatedWork W2910484851 @default.
- W2897198596 hasRelatedWork W2966657595 @default.
- W2897198596 hasRelatedWork W2998168123 @default.
- W2897198596 hasRelatedWork W3090006671 @default.
- W2897198596 hasRelatedWork W4281924768 @default.
- W2897198596 hasRelatedWork W4287995534 @default.
- W2897198596 hasVolume "6" @default.
- W2897198596 isParatext "false" @default.
- W2897198596 isRetracted "false" @default.
- W2897198596 magId "2897198596" @default.
- W2897198596 workType "article" @default.