Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914193281> ?p ?o ?g. }
- W2914193281 endingPage "811" @default.
- W2914193281 startingPage "803" @default.
- W2914193281 abstract "Automatic medical image analysis is one of the key tasks being used by the medical community for disease diagnosis and treatment planning. Statistical methods are the major algorithms used and consist of few steps including preprocessing, feature extraction, segmentation, and classification. Performance of such statistical methods is an important factor for their successful adaptation. The results of these algorithms depend on the quality of images fed to the processing pipeline: better the images, higher the results. Preprocessing is the pipeline phase that attempts to improve the quality of images before applying the chosen statistical method. In this work, popular preprocessing techniques are investigated from different perspectives where these preprocessing techniques are grouped into three main categories: noise removal, contrast enhancement, and edge detection. All possible combinations of these techniques are formed and applied on different image sets which are then passed to a predefined pipeline of feature extraction, segmentation, and classification. Classification results are calculated using three different measures: accuracy, sensitivity, and specificity while segmentation results are calculated using dice similarity score. Statistics of five high scoring combinations are reported for each data set. Experimental results show that application of proper preprocessing techniques could improve the classification and segmentation results to a greater extent. However, the combinations of these techniques depend on the characteristics and type of data set used." @default.
- W2914193281 created "2019-02-21" @default.
- W2914193281 creator A5018549351 @default.
- W2914193281 creator A5025537111 @default.
- W2914193281 creator A5056496239 @default.
- W2914193281 creator A5062778007 @default.
- W2914193281 creator A5072097752 @default.
- W2914193281 creator A5074075852 @default.
- W2914193281 creator A5082323806 @default.
- W2914193281 date "2019-02-15" @default.
- W2914193281 modified "2023-10-03" @default.
- W2914193281 title "Feature enhancement framework for brain tumor segmentation and classification" @default.
- W2914193281 cites W1530069278 @default.
- W2914193281 cites W1563088657 @default.
- W2914193281 cites W1571401318 @default.
- W2914193281 cites W1641498739 @default.
- W2914193281 cites W1979432452 @default.
- W2914193281 cites W2001412060 @default.
- W2914193281 cites W2043076104 @default.
- W2914193281 cites W2044465660 @default.
- W2914193281 cites W2045058870 @default.
- W2914193281 cites W2080190205 @default.
- W2914193281 cites W2111550372 @default.
- W2914193281 cites W2113131123 @default.
- W2914193281 cites W2122544730 @default.
- W2914193281 cites W2142603909 @default.
- W2914193281 cites W2150134853 @default.
- W2914193281 cites W2166538457 @default.
- W2914193281 cites W2168868107 @default.
- W2914193281 cites W2182098131 @default.
- W2914193281 cites W2251438188 @default.
- W2914193281 cites W2325117630 @default.
- W2914193281 cites W2485954569 @default.
- W2914193281 cites W2519099455 @default.
- W2914193281 cites W2598236886 @default.
- W2914193281 cites W2759589131 @default.
- W2914193281 cites W2763471831 @default.
- W2914193281 cites W2768529727 @default.
- W2914193281 cites W2789524143 @default.
- W2914193281 cites W2791575870 @default.
- W2914193281 cites W2796486101 @default.
- W2914193281 cites W2887392554 @default.
- W2914193281 cites W2892057769 @default.
- W2914193281 cites W2894754687 @default.
- W2914193281 cites W2895333097 @default.
- W2914193281 cites W2898491665 @default.
- W2914193281 cites W2905707672 @default.
- W2914193281 cites W2991719844 @default.
- W2914193281 cites W4239510810 @default.
- W2914193281 doi "https://doi.org/10.1002/jemt.23224" @default.
- W2914193281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30768835" @default.
- W2914193281 hasPublicationYear "2019" @default.
- W2914193281 type Work @default.
- W2914193281 sameAs 2914193281 @default.
- W2914193281 citedByCount "68" @default.
- W2914193281 countsByYear W29141932812019 @default.
- W2914193281 countsByYear W29141932812020 @default.
- W2914193281 countsByYear W29141932812021 @default.
- W2914193281 countsByYear W29141932812022 @default.
- W2914193281 countsByYear W29141932812023 @default.
- W2914193281 crossrefType "journal-article" @default.
- W2914193281 hasAuthorship W2914193281A5018549351 @default.
- W2914193281 hasAuthorship W2914193281A5025537111 @default.
- W2914193281 hasAuthorship W2914193281A5056496239 @default.
- W2914193281 hasAuthorship W2914193281A5062778007 @default.
- W2914193281 hasAuthorship W2914193281A5072097752 @default.
- W2914193281 hasAuthorship W2914193281A5074075852 @default.
- W2914193281 hasAuthorship W2914193281A5082323806 @default.
- W2914193281 hasConcept C115961682 @default.
- W2914193281 hasConcept C124101348 @default.
- W2914193281 hasConcept C124504099 @default.
- W2914193281 hasConcept C138885662 @default.
- W2914193281 hasConcept C153180895 @default.
- W2914193281 hasConcept C154945302 @default.
- W2914193281 hasConcept C199360897 @default.
- W2914193281 hasConcept C2776401178 @default.
- W2914193281 hasConcept C34736171 @default.
- W2914193281 hasConcept C41008148 @default.
- W2914193281 hasConcept C41895202 @default.
- W2914193281 hasConcept C43521106 @default.
- W2914193281 hasConcept C52622490 @default.
- W2914193281 hasConcept C89600930 @default.
- W2914193281 hasConcept C99498987 @default.
- W2914193281 hasConceptScore W2914193281C115961682 @default.
- W2914193281 hasConceptScore W2914193281C124101348 @default.
- W2914193281 hasConceptScore W2914193281C124504099 @default.
- W2914193281 hasConceptScore W2914193281C138885662 @default.
- W2914193281 hasConceptScore W2914193281C153180895 @default.
- W2914193281 hasConceptScore W2914193281C154945302 @default.
- W2914193281 hasConceptScore W2914193281C199360897 @default.
- W2914193281 hasConceptScore W2914193281C2776401178 @default.
- W2914193281 hasConceptScore W2914193281C34736171 @default.
- W2914193281 hasConceptScore W2914193281C41008148 @default.
- W2914193281 hasConceptScore W2914193281C41895202 @default.
- W2914193281 hasConceptScore W2914193281C43521106 @default.
- W2914193281 hasConceptScore W2914193281C52622490 @default.
- W2914193281 hasConceptScore W2914193281C89600930 @default.
- W2914193281 hasConceptScore W2914193281C99498987 @default.