Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914768170> ?p ?o ?g. }
- W2914768170 endingPage "145" @default.
- W2914768170 startingPage "120" @default.
- W2914768170 abstract "Many nonlinear phenomena, whose numerical simulation is not straightforward, depend on a set of parameters in a way which is not easy to predict beforehand. Wildland fires in presence of strong winds fall into this category, also due to the occurrence of firespotting. We present a global sensitivity analysis of a new sub-model for turbulence and fire-spotting included in a wildfire spread model based on a stochastic representation of the fireline. To limit the number of model evaluations, fast surrogate models based on generalized Polynomial Chaos (gPC) and Gaussian Process are used to identify the key parameters affecting topology and size of burnt area. This study investigates the application of these surrogates to compute Sobol’ sensitivity indices in an idealized test case. The performances of the surrogates for varying size and type of training sets as well as for varying parameterization and choice of algorithms have been compared. In particular, different types of truncation and projection strategies are tested for gPC surrogates. The best performance was achieved using a gPC strategy based on a sparse least-angle regression (LAR) and a low-discrepancy Halton’s sequence. Still, the LAR-based gPC surrogate tends to filter out the information coming from parameters with large length-scale, which is not the case of the cleaning-based gPC surrogate. The wind is known to drive the fire propagation. The results show that it is a more general leading factor that governs the generation of secondary fires. Using a sparse surrogate is thus a promising strategy to analyze new models and its dependency on input parameters in wildfire applications." @default.
- W2914768170 created "2019-02-21" @default.
- W2914768170 creator A5003649524 @default.
- W2914768170 creator A5015221131 @default.
- W2914768170 creator A5019560085 @default.
- W2914768170 creator A5075960385 @default.
- W2914768170 date "2019-07-01" @default.
- W2914768170 modified "2023-10-10" @default.
- W2914768170 title "On the merits of sparse surrogates for global sensitivity analysis of multi-scale nonlinear problems: Application to turbulence and fire-spotting model in wildland fire simulators" @default.
- W2914768170 cites W1483839007 @default.
- W2914768170 cites W1857089916 @default.
- W2914768170 cites W1967370340 @default.
- W2914768170 cites W1975008515 @default.
- W2914768170 cites W1978816960 @default.
- W2914768170 cites W1983520334 @default.
- W2914768170 cites W1986556145 @default.
- W2914768170 cites W1993286134 @default.
- W2914768170 cites W1996475268 @default.
- W2914768170 cites W2003206349 @default.
- W2914768170 cites W2004709915 @default.
- W2914768170 cites W2005891869 @default.
- W2914768170 cites W2008238851 @default.
- W2914768170 cites W2009675688 @default.
- W2914768170 cites W2010299042 @default.
- W2914768170 cites W2015887167 @default.
- W2914768170 cites W2018159038 @default.
- W2914768170 cites W2019227527 @default.
- W2914768170 cites W2019797235 @default.
- W2914768170 cites W2020785630 @default.
- W2914768170 cites W2027971388 @default.
- W2914768170 cites W2028992458 @default.
- W2914768170 cites W2034995282 @default.
- W2914768170 cites W2036242000 @default.
- W2914768170 cites W2037018162 @default.
- W2914768170 cites W2045355467 @default.
- W2914768170 cites W2049774453 @default.
- W2914768170 cites W2052981419 @default.
- W2914768170 cites W2053172806 @default.
- W2914768170 cites W2063978378 @default.
- W2914768170 cites W2064588427 @default.
- W2914768170 cites W2065775831 @default.
- W2914768170 cites W2067239960 @default.
- W2914768170 cites W2067569339 @default.
- W2914768170 cites W2068945922 @default.
- W2914768170 cites W2088880006 @default.
- W2914768170 cites W2090911974 @default.
- W2914768170 cites W2097441841 @default.
- W2914768170 cites W2099722563 @default.
- W2914768170 cites W2113117406 @default.
- W2914768170 cites W2122801340 @default.
- W2914768170 cites W2127937824 @default.
- W2914768170 cites W2128386435 @default.
- W2914768170 cites W2131356013 @default.
- W2914768170 cites W2144224524 @default.
- W2914768170 cites W2158595370 @default.
- W2914768170 cites W2161663214 @default.
- W2914768170 cites W2162052408 @default.
- W2914768170 cites W2176221034 @default.
- W2914768170 cites W2216368428 @default.
- W2914768170 cites W2216629391 @default.
- W2914768170 cites W2259809760 @default.
- W2914768170 cites W2320776105 @default.
- W2914768170 cites W2468919567 @default.
- W2914768170 cites W2606074091 @default.
- W2914768170 cites W2610366230 @default.
- W2914768170 cites W2611287998 @default.
- W2914768170 cites W2612820046 @default.
- W2914768170 cites W2789513869 @default.
- W2914768170 cites W2798261321 @default.
- W2914768170 cites W2963032837 @default.
- W2914768170 cites W2963889731 @default.
- W2914768170 cites W3098105755 @default.
- W2914768170 cites W3105621768 @default.
- W2914768170 cites W4244846356 @default.
- W2914768170 doi "https://doi.org/10.1016/j.cnsns.2019.02.002" @default.
- W2914768170 hasPublicationYear "2019" @default.
- W2914768170 type Work @default.
- W2914768170 sameAs 2914768170 @default.
- W2914768170 citedByCount "16" @default.
- W2914768170 countsByYear W29147681702020 @default.
- W2914768170 countsByYear W29147681702021 @default.
- W2914768170 countsByYear W29147681702022 @default.
- W2914768170 countsByYear W29147681702023 @default.
- W2914768170 crossrefType "journal-article" @default.
- W2914768170 hasAuthorship W2914768170A5003649524 @default.
- W2914768170 hasAuthorship W2914768170A5015221131 @default.
- W2914768170 hasAuthorship W2914768170A5019560085 @default.
- W2914768170 hasAuthorship W2914768170A5075960385 @default.
- W2914768170 hasBestOaLocation W29147681702 @default.
- W2914768170 hasConcept C105795698 @default.
- W2914768170 hasConcept C11413529 @default.
- W2914768170 hasConcept C119857082 @default.
- W2914768170 hasConcept C121332964 @default.
- W2914768170 hasConcept C127413603 @default.
- W2914768170 hasConcept C131675550 @default.
- W2914768170 hasConcept C158622935 @default.
- W2914768170 hasConcept C163716315 @default.
- W2914768170 hasConcept C19499675 @default.