Matches in SemOpenAlex for { <https://semopenalex.org/work/W2926001774> ?p ?o ?g. }
- W2926001774 abstract "Numerous chemical compounds are distributed around the world and may affect the homeostasis of the endocrine system by disrupting the normal functions of hormone receptors. Although the risks associated with these compounds have been evaluated by acute toxicity testing in mammalian models, the chronic toxicity of many chemicals remains due to high cost of the compounds and the testing, etc. However, computational approaches may be promising alternatives and reduce these evaluations. Recently, deep learning (DL) has been shown to be promising prediction models with high accuracy for recognition of images, speech, signals, and videos since it greatly benefits from large datasets. Recently, a novel DL-based technique called DeepSnap was developed to conduct QSAR analysis using three-dimensional images of chemical structures. It can be used to predict the potential toxicity of many different chemicals to various receptors without extraction of descriptors. DeepSnap has been shown to have a very high capacity in tests using Tox21 quantitative qHTP datasets. Numerous parameters must be adjusted to use the DeepSnap method but they have not been optimized. In this study, the effects of these parameters on the performance of the DL prediction model were evaluated in terms of the loss in validation as an indicator for evaluating the performance of the DL using the toxicity information in the Tox21 qHTP database. The relations of the parameters of DeepSnap such as (1) number of molecules per SDF split into (2) zoom factor percentage, (3) atom size for van der waals percentage, (4) bond radius, (5) minimum bond distance, and (6) bond tolerance, with the validation loss following quadratic function curves, which suggests that optimal thresholds exist to attain the best performance with these prediction models. Using the parameter values set with the best performance, the prediction model of chemical compounds for CAR agonist was built using 64 images, at 105° angle, with AUC of 0.791. Thus, based on these the parameters, the proposed DeepSnap-DL approach will be highly reliable and beneficial to establish models to assess the risk associated with various chemicals." @default.
- W2926001774 created "2019-04-11" @default.
- W2926001774 creator A5000664500 @default.
- W2926001774 creator A5057190375 @default.
- W2926001774 date "2019-03-28" @default.
- W2926001774 modified "2023-10-16" @default.
- W2926001774 title "Optimization of a Deep-Learning Method Based on the Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-Image-Input Technique for Quantitative Structure–Activity Relationship (QSAR) Analysis" @default.
- W2926001774 cites W1493004075 @default.
- W2926001774 cites W1579194856 @default.
- W2926001774 cites W1915485278 @default.
- W2926001774 cites W1967434540 @default.
- W2926001774 cites W1969417150 @default.
- W2926001774 cites W1971706225 @default.
- W2926001774 cites W1975147762 @default.
- W2926001774 cites W1978777023 @default.
- W2926001774 cites W1980445860 @default.
- W2926001774 cites W1983364832 @default.
- W2926001774 cites W1985366137 @default.
- W2926001774 cites W1986425871 @default.
- W2926001774 cites W1986894741 @default.
- W2926001774 cites W1988037271 @default.
- W2926001774 cites W1991146785 @default.
- W2926001774 cites W1991264156 @default.
- W2926001774 cites W1992633277 @default.
- W2926001774 cites W1994122604 @default.
- W2926001774 cites W1995860742 @default.
- W2926001774 cites W1999118725 @default.
- W2926001774 cites W1999798000 @default.
- W2926001774 cites W2000860669 @default.
- W2926001774 cites W2016088798 @default.
- W2926001774 cites W2016316738 @default.
- W2926001774 cites W2016510878 @default.
- W2926001774 cites W2032469875 @default.
- W2926001774 cites W2032992521 @default.
- W2926001774 cites W2058107752 @default.
- W2926001774 cites W2066148089 @default.
- W2926001774 cites W2067801796 @default.
- W2926001774 cites W2069010397 @default.
- W2926001774 cites W2070854774 @default.
- W2926001774 cites W2071551353 @default.
- W2926001774 cites W2082202649 @default.
- W2926001774 cites W2099606917 @default.
- W2926001774 cites W2108492672 @default.
- W2926001774 cites W2115450933 @default.
- W2926001774 cites W2116963147 @default.
- W2926001774 cites W2127553917 @default.
- W2926001774 cites W2130646036 @default.
- W2926001774 cites W2131428160 @default.
- W2926001774 cites W2134843847 @default.
- W2926001774 cites W2136144366 @default.
- W2926001774 cites W2147122257 @default.
- W2926001774 cites W2155893237 @default.
- W2926001774 cites W2160498764 @default.
- W2926001774 cites W2163922914 @default.
- W2926001774 cites W2165837380 @default.
- W2926001774 cites W2170201161 @default.
- W2926001774 cites W2189911347 @default.
- W2926001774 cites W2253823912 @default.
- W2926001774 cites W2261689926 @default.
- W2926001774 cites W2279004469 @default.
- W2926001774 cites W2290847742 @default.
- W2926001774 cites W2312790960 @default.
- W2926001774 cites W2322262466 @default.
- W2926001774 cites W2340160082 @default.
- W2926001774 cites W2402258526 @default.
- W2926001774 cites W2402774294 @default.
- W2926001774 cites W2473190403 @default.
- W2926001774 cites W2486628936 @default.
- W2926001774 cites W2517582793 @default.
- W2926001774 cites W2524455268 @default.
- W2926001774 cites W2531120788 @default.
- W2926001774 cites W2537171419 @default.
- W2926001774 cites W2553879858 @default.
- W2926001774 cites W2555121552 @default.
- W2926001774 cites W2586428858 @default.
- W2926001774 cites W2588028650 @default.
- W2926001774 cites W2593970154 @default.
- W2926001774 cites W2594037876 @default.
- W2926001774 cites W2600701715 @default.
- W2926001774 cites W2604314403 @default.
- W2926001774 cites W2606806978 @default.
- W2926001774 cites W2606915180 @default.
- W2926001774 cites W2606923628 @default.
- W2926001774 cites W2607113351 @default.
- W2926001774 cites W2608045584 @default.
- W2926001774 cites W2610646689 @default.
- W2926001774 cites W2611653288 @default.
- W2926001774 cites W2614122606 @default.
- W2926001774 cites W2617033517 @default.
- W2926001774 cites W2618235315 @default.
- W2926001774 cites W2618530766 @default.
- W2926001774 cites W2620431423 @default.
- W2926001774 cites W2622826443 @default.
- W2926001774 cites W2739345840 @default.
- W2926001774 cites W2739866241 @default.
- W2926001774 cites W2745718614 @default.
- W2926001774 cites W2753588101 @default.
- W2926001774 cites W2756456050 @default.
- W2926001774 cites W2760085125 @default.
- W2926001774 cites W2765128648 @default.