Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950811108> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2950811108 abstract "The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocay's Lemma is an important tool in graph reconstruction. Roughly speaking, given the deck of a graph $G$ and any finite sequence of graphs, it gives a linear constraint that every reconstruction of $G$ must satisfy. Let $psi(n)$ be the number of distinct (mutually non-isomorphic) graphs on $n$ vertices, and let $d(n)$ be the number of distinct decks that can be constructed from these graphs. Then the difference $psi(n) - d(n)$ measures how many graphs cannot be reconstructed from their decks. In particular, the graph reconstruction conjecture is true for $n$-vertex graphs if and only if $psi(n) = d(n)$. We give a framework based on Kocay's lemma to study this discrepancy. We prove that if $M$ is a matrix of covering numbers of graphs by sequences of graphs, then $d(n) geq mathsf{rank}_mathbb{R}(M)$. In particular, all $n$-vertex graphs are reconstructible if one such matrix has rank $psi(n)$. To complement this result, we prove that it is possible to choose a family of sequences of graphs such that the corresponding matrix $M$ of covering numbers satisfies $d(n) = mathsf{rank}_mathbb{R}(M)$." @default.
- W2950811108 created "2019-06-27" @default.
- W2950811108 creator A5024698436 @default.
- W2950811108 creator A5086921168 @default.
- W2950811108 date "2013-01-17" @default.
- W2950811108 modified "2023-09-26" @default.
- W2950811108 title "An algebraic formulation of the graph reconstruction conjecture" @default.
- W2950811108 cites W110370097 @default.
- W2950811108 cites W1479863711 @default.
- W2950811108 cites W1533006072 @default.
- W2950811108 cites W1597152871 @default.
- W2950811108 cites W1985188710 @default.
- W2950811108 cites W2003824380 @default.
- W2950811108 cites W2022696176 @default.
- W2950811108 cites W2060586081 @default.
- W2950811108 cites W2160687009 @default.
- W2950811108 cites W2753728423 @default.
- W2950811108 cites W2989634522 @default.
- W2950811108 cites W3148190347 @default.
- W2950811108 hasPublicationYear "2013" @default.
- W2950811108 type Work @default.
- W2950811108 sameAs 2950811108 @default.
- W2950811108 citedByCount "0" @default.
- W2950811108 crossrefType "posted-content" @default.
- W2950811108 hasAuthorship W2950811108A5024698436 @default.
- W2950811108 hasAuthorship W2950811108A5086921168 @default.
- W2950811108 hasConcept C102192266 @default.
- W2950811108 hasConcept C114614502 @default.
- W2950811108 hasConcept C118615104 @default.
- W2950811108 hasConcept C132525143 @default.
- W2950811108 hasConcept C160446614 @default.
- W2950811108 hasConcept C203776342 @default.
- W2950811108 hasConcept C2780990831 @default.
- W2950811108 hasConcept C33923547 @default.
- W2950811108 hasConcept C43517604 @default.
- W2950811108 hasConcept C59824394 @default.
- W2950811108 hasConcept C80899671 @default.
- W2950811108 hasConceptScore W2950811108C102192266 @default.
- W2950811108 hasConceptScore W2950811108C114614502 @default.
- W2950811108 hasConceptScore W2950811108C118615104 @default.
- W2950811108 hasConceptScore W2950811108C132525143 @default.
- W2950811108 hasConceptScore W2950811108C160446614 @default.
- W2950811108 hasConceptScore W2950811108C203776342 @default.
- W2950811108 hasConceptScore W2950811108C2780990831 @default.
- W2950811108 hasConceptScore W2950811108C33923547 @default.
- W2950811108 hasConceptScore W2950811108C43517604 @default.
- W2950811108 hasConceptScore W2950811108C59824394 @default.
- W2950811108 hasConceptScore W2950811108C80899671 @default.
- W2950811108 hasLocation W29508111081 @default.
- W2950811108 hasOpenAccess W2950811108 @default.
- W2950811108 hasPrimaryLocation W29508111081 @default.
- W2950811108 hasRelatedWork W1482329008 @default.
- W2950811108 hasRelatedWork W1966170165 @default.
- W2950811108 hasRelatedWork W1974893148 @default.
- W2950811108 hasRelatedWork W2012655277 @default.
- W2950811108 hasRelatedWork W2063410295 @default.
- W2950811108 hasRelatedWork W2154878346 @default.
- W2950811108 hasRelatedWork W2223422431 @default.
- W2950811108 hasRelatedWork W2594250051 @default.
- W2950811108 hasRelatedWork W2754428346 @default.
- W2950811108 hasRelatedWork W2767598609 @default.
- W2950811108 hasRelatedWork W2949205788 @default.
- W2950811108 hasRelatedWork W2952370344 @default.
- W2950811108 hasRelatedWork W2964029049 @default.
- W2950811108 hasRelatedWork W2999617751 @default.
- W2950811108 hasRelatedWork W3033559598 @default.
- W2950811108 hasRelatedWork W3034503485 @default.
- W2950811108 hasRelatedWork W3105872137 @default.
- W2950811108 hasRelatedWork W3125937266 @default.
- W2950811108 hasRelatedWork W782558809 @default.
- W2950811108 hasRelatedWork W2290409850 @default.
- W2950811108 isParatext "false" @default.
- W2950811108 isRetracted "false" @default.
- W2950811108 magId "2950811108" @default.
- W2950811108 workType "article" @default.