Matches in SemOpenAlex for { <https://semopenalex.org/work/W2958345746> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2958345746 abstract "Sign language is the primary way of communication between deaf people, but the majority of hearing people do not know how to sign. The reliance of deaf people on interpreters is both inconvenient and cost inefficient. Many research groups have experimented with using machine learning to develop automatic translators. Largely, these efforts have been constrained to restrictive dictionaries or insufficiently small signers or signed content. We introduce the world's largest sign language dataset to date- a collection of 50,000 video snippets taken from a pool of 10,000 unique utterances signed by 50 signers. We further propose several sequence-to-sequence deep learning approaches to automatically translate from Chinese sign language to both English and Mandarin written text. These methods utilize body joint position, facial expression, as well as finger articulation. While models can overfit on training sets, generalization to unforeseen utterances remains challenging with real-world data. The introduced dataset and methods demonstrate how modern machine learning methods are able to close the communication gap between deaf and hearing people." @default.
- W2958345746 created "2019-07-23" @default.
- W2958345746 creator A5002928269 @default.
- W2958345746 creator A5032475867 @default.
- W2958345746 creator A5045740901 @default.
- W2958345746 creator A5047202707 @default.
- W2958345746 creator A5057100594 @default.
- W2958345746 creator A5062071989 @default.
- W2958345746 creator A5088141052 @default.
- W2958345746 date "2019-05-01" @default.
- W2958345746 modified "2023-10-05" @default.
- W2958345746 title "Large Scale Sign Language Interpretation" @default.
- W2958345746 cites W1903029394 @default.
- W2958345746 cites W1981073134 @default.
- W2958345746 cites W2068972050 @default.
- W2958345746 cites W2072419079 @default.
- W2958345746 cites W2080873731 @default.
- W2958345746 cites W2139501017 @default.
- W2958345746 cites W2188882108 @default.
- W2958345746 cites W2243738093 @default.
- W2958345746 cites W2346219687 @default.
- W2958345746 cites W2401084598 @default.
- W2958345746 cites W2463640844 @default.
- W2958345746 cites W2475715656 @default.
- W2958345746 cites W2549139847 @default.
- W2958345746 cites W2559085405 @default.
- W2958345746 cites W2620105270 @default.
- W2958345746 cites W2766868096 @default.
- W2958345746 cites W2770128248 @default.
- W2958345746 cites W2770640628 @default.
- W2958345746 cites W2785343708 @default.
- W2958345746 cites W2799020610 @default.
- W2958345746 cites W2807126412 @default.
- W2958345746 cites W2807840688 @default.
- W2958345746 cites W2899768692 @default.
- W2958345746 cites W2963150697 @default.
- W2958345746 cites W2963921921 @default.
- W2958345746 cites W2963993763 @default.
- W2958345746 cites W2964241990 @default.
- W2958345746 doi "https://doi.org/10.1109/fg.2019.8756506" @default.
- W2958345746 hasPublicationYear "2019" @default.
- W2958345746 type Work @default.
- W2958345746 sameAs 2958345746 @default.
- W2958345746 citedByCount "10" @default.
- W2958345746 countsByYear W29583457462020 @default.
- W2958345746 countsByYear W29583457462021 @default.
- W2958345746 countsByYear W29583457462022 @default.
- W2958345746 crossrefType "proceedings-article" @default.
- W2958345746 hasAuthorship W2958345746A5002928269 @default.
- W2958345746 hasAuthorship W2958345746A5032475867 @default.
- W2958345746 hasAuthorship W2958345746A5045740901 @default.
- W2958345746 hasAuthorship W2958345746A5047202707 @default.
- W2958345746 hasAuthorship W2958345746A5057100594 @default.
- W2958345746 hasAuthorship W2958345746A5062071989 @default.
- W2958345746 hasAuthorship W2958345746A5088141052 @default.
- W2958345746 hasConcept C122783720 @default.
- W2958345746 hasConcept C138885662 @default.
- W2958345746 hasConcept C154945302 @default.
- W2958345746 hasConcept C199360897 @default.
- W2958345746 hasConcept C204321447 @default.
- W2958345746 hasConcept C22019652 @default.
- W2958345746 hasConcept C28490314 @default.
- W2958345746 hasConcept C41008148 @default.
- W2958345746 hasConcept C41895202 @default.
- W2958345746 hasConcept C50644808 @default.
- W2958345746 hasConcept C522192633 @default.
- W2958345746 hasConcept C72280650 @default.
- W2958345746 hasConceptScore W2958345746C122783720 @default.
- W2958345746 hasConceptScore W2958345746C138885662 @default.
- W2958345746 hasConceptScore W2958345746C154945302 @default.
- W2958345746 hasConceptScore W2958345746C199360897 @default.
- W2958345746 hasConceptScore W2958345746C204321447 @default.
- W2958345746 hasConceptScore W2958345746C22019652 @default.
- W2958345746 hasConceptScore W2958345746C28490314 @default.
- W2958345746 hasConceptScore W2958345746C41008148 @default.
- W2958345746 hasConceptScore W2958345746C41895202 @default.
- W2958345746 hasConceptScore W2958345746C50644808 @default.
- W2958345746 hasConceptScore W2958345746C522192633 @default.
- W2958345746 hasConceptScore W2958345746C72280650 @default.
- W2958345746 hasLocation W29583457461 @default.
- W2958345746 hasOpenAccess W2958345746 @default.
- W2958345746 hasPrimaryLocation W29583457461 @default.
- W2958345746 hasRelatedWork W1498547796 @default.
- W2958345746 hasRelatedWork W2056227523 @default.
- W2958345746 hasRelatedWork W2348960846 @default.
- W2958345746 hasRelatedWork W2393289178 @default.
- W2958345746 hasRelatedWork W2543895481 @default.
- W2958345746 hasRelatedWork W2794385750 @default.
- W2958345746 hasRelatedWork W2803416324 @default.
- W2958345746 hasRelatedWork W2943065587 @default.
- W2958345746 hasRelatedWork W4200113336 @default.
- W2958345746 hasRelatedWork W4200549146 @default.
- W2958345746 isParatext "false" @default.
- W2958345746 isRetracted "false" @default.
- W2958345746 magId "2958345746" @default.
- W2958345746 workType "article" @default.