Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959584677> ?p ?o ?g. }
- W2959584677 endingPage "61" @default.
- W2959584677 startingPage "5" @default.
- W2959584677 abstract "The Sandia Fracture Challenges provide a forum for the mechanics community to assess its ability to predict ductile fracture through a blind, round-robin format where mechanicians are challenged to predict the deformation and failure of an arbitrary geometry given experimental calibration data. The Third Challenge (SFC3) required participants to predict fracture in an additively manufactured (AM) 316L stainless steel bar containing through holes and internal cavities that could not have been conventionally machined. The volunteer participants were provided extensive data including tension and notched tensions tests of 316L specimens built on the same build-plate as the Challenge geometry, micro-CT scans of the Challenge specimens and geometric measurements of the feature based on the scans, electron backscatter diffraction (EBSD) information on grain texture, and post-test fractography of the calibration specimens. Surprisingly, the global behavior of the SFC3 geometry specimens had modest variability despite being made of AM metal, with all of the SFC3 geometry specimens failing under the same failure mode. This is attributed to the large stress concentrations from the holes overwhelming the stochastic local influence of the AM voids and surface roughness. The teams were asked to predict a number of quantities of interest in the response based on global and local measures that were compared to experimental data, based partly on Digital Image Correlation (DIC) measurements of surface displacements and strains, including predictions of variability in the resulting fracture response, as the basis for assessment of the predictive capabilities of the modeling and simulation strategies. Twenty-one teams submitted predictions obtained from a variety of methods: the finite element method (FEM) or the mesh-free, peridynamic method; solvers with explicit time integration, implicit time integration, or quasi-statics; fracture methods including element deletion, peridynamics with bond damage, XFEM, damage (stiffness degradation), and adaptive remeshing. These predictions utilized many different material models: plasticity models including J2 plasticity or Hill yield with isotropic hardening, mixed Swift-Voce hardening, kinematic hardening, or custom hardening curves; fracture criteria including GTN model, Hosford-Coulomb, triaxiality-dependent strain, critical fracture energy, damage-based model, critical void volume fraction, and Johnson-Cook model; and damage evolution models including damage accumulation and evolution, crack band model, fracture energy, displacement value threshold, incremental stress triaxiality, Cocks-Ashby void growth, and void nucleation, growth, and coalescence. Teams used various combinations of calibration data from tensile specimens, the notched tensile specimens, and literature data. A detailed comparison of results based of these different methods is presented in this paper to suggest a set of best practices for modeling ductile fracture in situations like the SFC3 AM-material problem. All blind predictions identified the nominal crack path and initiation location correctly. The SFC3 participants generally fared better in their global predictions of deformation and failure than the participants in the previous Challenges, suggesting the relative maturity of the models used and adoption of best practices from previous Challenges. This paper provides detailed analyses of the results, including discussion of the utility of the provided data, challenges of the experimental-numerical comparison, defects in the AM material, and human factors." @default.
- W2959584677 created "2019-07-23" @default.
- W2959584677 creator A5000007361 @default.
- W2959584677 creator A5002335574 @default.
- W2959584677 creator A5002966042 @default.
- W2959584677 creator A5003724918 @default.
- W2959584677 creator A5005431963 @default.
- W2959584677 creator A5005775653 @default.
- W2959584677 creator A5008236341 @default.
- W2959584677 creator A5008756038 @default.
- W2959584677 creator A5009715715 @default.
- W2959584677 creator A5015993242 @default.
- W2959584677 creator A5017064487 @default.
- W2959584677 creator A5017465549 @default.
- W2959584677 creator A5021480075 @default.
- W2959584677 creator A5021877233 @default.
- W2959584677 creator A5022717355 @default.
- W2959584677 creator A5025672661 @default.
- W2959584677 creator A5026819884 @default.
- W2959584677 creator A5030149771 @default.
- W2959584677 creator A5033442455 @default.
- W2959584677 creator A5033981537 @default.
- W2959584677 creator A5035563258 @default.
- W2959584677 creator A5037566488 @default.
- W2959584677 creator A5039378658 @default.
- W2959584677 creator A5040925905 @default.
- W2959584677 creator A5041605477 @default.
- W2959584677 creator A5042876256 @default.
- W2959584677 creator A5047246431 @default.
- W2959584677 creator A5051565668 @default.
- W2959584677 creator A5051783288 @default.
- W2959584677 creator A5058757545 @default.
- W2959584677 creator A5060997521 @default.
- W2959584677 creator A5062727576 @default.
- W2959584677 creator A5064074953 @default.
- W2959584677 creator A5064392945 @default.
- W2959584677 creator A5064872419 @default.
- W2959584677 creator A5066327735 @default.
- W2959584677 creator A5068236602 @default.
- W2959584677 creator A5073993155 @default.
- W2959584677 creator A5074532477 @default.
- W2959584677 creator A5074546523 @default.
- W2959584677 creator A5076204533 @default.
- W2959584677 creator A5076970807 @default.
- W2959584677 creator A5077576824 @default.
- W2959584677 creator A5078532068 @default.
- W2959584677 creator A5078659325 @default.
- W2959584677 creator A5081147849 @default.
- W2959584677 creator A5082051645 @default.
- W2959584677 creator A5083579051 @default.
- W2959584677 creator A5087469228 @default.
- W2959584677 creator A5088087988 @default.
- W2959584677 creator A5090389493 @default.
- W2959584677 creator A5091398160 @default.
- W2959584677 date "2019-07-01" @default.
- W2959584677 modified "2023-10-15" @default.
- W2959584677 title "The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal" @default.
- W2959584677 cites W1032073828 @default.
- W2959584677 cites W1078455779 @default.
- W2959584677 cites W1506342804 @default.
- W2959584677 cites W1522046476 @default.
- W2959584677 cites W1595159159 @default.
- W2959584677 cites W1601548791 @default.
- W2959584677 cites W1607663648 @default.
- W2959584677 cites W1890854876 @default.
- W2959584677 cites W1969566657 @default.
- W2959584677 cites W1970246823 @default.
- W2959584677 cites W1976897077 @default.
- W2959584677 cites W1993403100 @default.
- W2959584677 cites W1997967562 @default.
- W2959584677 cites W2000486140 @default.
- W2959584677 cites W2000546709 @default.
- W2959584677 cites W2002066326 @default.
- W2959584677 cites W2010082831 @default.
- W2959584677 cites W2010406331 @default.
- W2959584677 cites W2012379623 @default.
- W2959584677 cites W2012828992 @default.
- W2959584677 cites W2014521333 @default.
- W2959584677 cites W2016102352 @default.
- W2959584677 cites W2016463190 @default.
- W2959584677 cites W2023381719 @default.
- W2959584677 cites W2026222734 @default.
- W2959584677 cites W2035090777 @default.
- W2959584677 cites W2035518577 @default.
- W2959584677 cites W2037741700 @default.
- W2959584677 cites W2039019236 @default.
- W2959584677 cites W2042947602 @default.
- W2959584677 cites W2046159077 @default.
- W2959584677 cites W2048030592 @default.
- W2959584677 cites W2050661979 @default.
- W2959584677 cites W2054739705 @default.
- W2959584677 cites W2057193501 @default.
- W2959584677 cites W2060382049 @default.
- W2959584677 cites W2061553048 @default.
- W2959584677 cites W2068236781 @default.
- W2959584677 cites W2073720812 @default.
- W2959584677 cites W2075417208 @default.
- W2959584677 cites W2079294419 @default.