Matches in SemOpenAlex for { <https://semopenalex.org/work/W2985309968> ?p ?o ?g. }
- W2985309968 endingPage "140" @default.
- W2985309968 startingPage "131" @default.
- W2985309968 abstract "Abstract Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR." @default.
- W2985309968 created "2019-11-22" @default.
- W2985309968 creator A5010647270 @default.
- W2985309968 creator A5011817595 @default.
- W2985309968 creator A5014886068 @default.
- W2985309968 creator A5014960519 @default.
- W2985309968 creator A5015147082 @default.
- W2985309968 creator A5016476715 @default.
- W2985309968 creator A5018530956 @default.
- W2985309968 creator A5018959781 @default.
- W2985309968 creator A5019717466 @default.
- W2985309968 creator A5024951576 @default.
- W2985309968 creator A5026813448 @default.
- W2985309968 creator A5032754442 @default.
- W2985309968 creator A5035543689 @default.
- W2985309968 creator A5039110809 @default.
- W2985309968 creator A5039158824 @default.
- W2985309968 creator A5049032710 @default.
- W2985309968 creator A5049870542 @default.
- W2985309968 creator A5060498394 @default.
- W2985309968 creator A5060566225 @default.
- W2985309968 creator A5061683029 @default.
- W2985309968 creator A5064365084 @default.
- W2985309968 creator A5070513093 @default.
- W2985309968 creator A5072355079 @default.
- W2985309968 creator A5082085876 @default.
- W2985309968 creator A5087236852 @default.
- W2985309968 creator A5090999540 @default.
- W2985309968 date "2019-11-09" @default.
- W2985309968 modified "2023-10-18" @default.
- W2985309968 title "The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region" @default.
- W2985309968 cites W1964243115 @default.
- W2985309968 cites W1965504978 @default.
- W2985309968 cites W1988290458 @default.
- W2985309968 cites W1996109594 @default.
- W2985309968 cites W2004282024 @default.
- W2985309968 cites W2008695477 @default.
- W2985309968 cites W2011417901 @default.
- W2985309968 cites W2013392009 @default.
- W2985309968 cites W2024148142 @default.
- W2985309968 cites W2024282184 @default.
- W2985309968 cites W2032781378 @default.
- W2985309968 cites W2033964854 @default.
- W2985309968 cites W2034068093 @default.
- W2985309968 cites W2052306683 @default.
- W2985309968 cites W2055014301 @default.
- W2985309968 cites W2060257233 @default.
- W2985309968 cites W2064157145 @default.
- W2985309968 cites W2066617434 @default.
- W2985309968 cites W2076485300 @default.
- W2985309968 cites W2076551542 @default.
- W2985309968 cites W2076632105 @default.
- W2985309968 cites W2086986170 @default.
- W2985309968 cites W2087264817 @default.
- W2985309968 cites W2105993471 @default.
- W2985309968 cites W2110114082 @default.
- W2985309968 cites W2129520370 @default.
- W2985309968 cites W2130189616 @default.
- W2985309968 cites W2131211874 @default.
- W2985309968 cites W2134857782 @default.
- W2985309968 cites W2136236151 @default.
- W2985309968 cites W2164048900 @default.
- W2985309968 cites W2345142330 @default.
- W2985309968 cites W2365578599 @default.
- W2985309968 cites W2416956474 @default.
- W2985309968 cites W2553598020 @default.
- W2985309968 cites W2944926689 @default.
- W2985309968 cites W2972947291 @default.
- W2985309968 cites W86114122 @default.
- W2985309968 cites W2014674181 @default.
- W2985309968 doi "https://doi.org/10.1007/s10453-019-09615-w" @default.
- W2985309968 hasPublicationYear "2019" @default.
- W2985309968 type Work @default.
- W2985309968 sameAs 2985309968 @default.
- W2985309968 citedByCount "7" @default.
- W2985309968 countsByYear W29853099682020 @default.
- W2985309968 countsByYear W29853099682021 @default.
- W2985309968 countsByYear W29853099682022 @default.
- W2985309968 countsByYear W29853099682023 @default.
- W2985309968 crossrefType "journal-article" @default.
- W2985309968 hasAuthorship W2985309968A5010647270 @default.
- W2985309968 hasAuthorship W2985309968A5011817595 @default.
- W2985309968 hasAuthorship W2985309968A5014886068 @default.
- W2985309968 hasAuthorship W2985309968A5014960519 @default.
- W2985309968 hasAuthorship W2985309968A5015147082 @default.
- W2985309968 hasAuthorship W2985309968A5016476715 @default.
- W2985309968 hasAuthorship W2985309968A5018530956 @default.
- W2985309968 hasAuthorship W2985309968A5018959781 @default.
- W2985309968 hasAuthorship W2985309968A5019717466 @default.
- W2985309968 hasAuthorship W2985309968A5024951576 @default.
- W2985309968 hasAuthorship W2985309968A5026813448 @default.
- W2985309968 hasAuthorship W2985309968A5032754442 @default.
- W2985309968 hasAuthorship W2985309968A5035543689 @default.
- W2985309968 hasAuthorship W2985309968A5039110809 @default.
- W2985309968 hasAuthorship W2985309968A5039158824 @default.
- W2985309968 hasAuthorship W2985309968A5049032710 @default.
- W2985309968 hasAuthorship W2985309968A5049870542 @default.
- W2985309968 hasAuthorship W2985309968A5060498394 @default.