Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990736268> ?p ?o ?g. }
- W2990736268 abstract "We review some basic ideas of the robust statistics literature and define tools that allows us to construct robust statistical procedures. We show how these ideas, originally developed for fixed dimensional settings, can also be applied to high-dimensional problems where the number of unknown parameters can be larger than the sample size. In particular, we build on the theory of M-estimators and adapt it to handle the problems of high-dimensional regression and covariance matrix estimation via regularization. For the former problem we show that penalized M-estimators for high-dimensional generalized linear models can lead to estimators that are consistent when the data is nice and contains no contaminated observations, while importantly remaining stable in the presence of a small fraction of outliers. For the problem of covariance estimation we show that M-estimators be used to significantly weaken the typical requirement of having sub-Gaussian distributions to assuming only a few finite moments. This relaxation cannot be achieved by regularizing the sample covariance as in classical fixed dimensional regimes." @default.
- W2990736268 created "2019-12-05" @default.
- W2990736268 creator A5017137031 @default.
- W2990736268 date "2019-11-29" @default.
- W2990736268 modified "2023-09-28" @default.
- W2990736268 title "Robust Methods for High-Dimensional Regression and Covariance Matrix Estimation" @default.
- W2990736268 cites W1559370522 @default.
- W2990736268 cites W1730512236 @default.
- W2990736268 cites W1795797942 @default.
- W2990736268 cites W1862068047 @default.
- W2990736268 cites W1953394243 @default.
- W2990736268 cites W1963936186 @default.
- W2990736268 cites W1968694834 @default.
- W2990736268 cites W1972163814 @default.
- W2990736268 cites W1981638497 @default.
- W2990736268 cites W1984332158 @default.
- W2990736268 cites W1989727964 @default.
- W2990736268 cites W1989898472 @default.
- W2990736268 cites W1995834279 @default.
- W2990736268 cites W1997859853 @default.
- W2990736268 cites W2012328620 @default.
- W2990736268 cites W2016119924 @default.
- W2990736268 cites W2020925091 @default.
- W2990736268 cites W2022943305 @default.
- W2990736268 cites W2039989197 @default.
- W2990736268 cites W2040373108 @default.
- W2990736268 cites W2046033161 @default.
- W2990736268 cites W2053061982 @default.
- W2990736268 cites W2056938357 @default.
- W2990736268 cites W2057535756 @default.
- W2990736268 cites W2061698507 @default.
- W2990736268 cites W2063978378 @default.
- W2990736268 cites W2069119359 @default.
- W2990736268 cites W2074682976 @default.
- W2990736268 cites W2079775628 @default.
- W2990736268 cites W2081746825 @default.
- W2990736268 cites W2095225664 @default.
- W2990736268 cites W2097255042 @default.
- W2990736268 cites W2109363337 @default.
- W2990736268 cites W2119862467 @default.
- W2990736268 cites W2122825543 @default.
- W2990736268 cites W2124315825 @default.
- W2990736268 cites W2132555912 @default.
- W2990736268 cites W2133593515 @default.
- W2990736268 cites W2136404054 @default.
- W2990736268 cites W2138019504 @default.
- W2990736268 cites W2147246240 @default.
- W2990736268 cites W2154560360 @default.
- W2990736268 cites W2163162137 @default.
- W2990736268 cites W232928816 @default.
- W2990736268 cites W2489822048 @default.
- W2990736268 cites W2583860259 @default.
- W2990736268 cites W2617337526 @default.
- W2990736268 cites W2635878986 @default.
- W2990736268 cites W2790297619 @default.
- W2990736268 cites W2794809244 @default.
- W2990736268 cites W2950190315 @default.
- W2990736268 cites W2962730199 @default.
- W2990736268 cites W2962927523 @default.
- W2990736268 cites W2963840025 @default.
- W2990736268 cites W2964099165 @default.
- W2990736268 cites W2964232515 @default.
- W2990736268 cites W2964254462 @default.
- W2990736268 cites W2964287564 @default.
- W2990736268 cites W3098834468 @default.
- W2990736268 cites W3099470970 @default.
- W2990736268 cites W3099609308 @default.
- W2990736268 cites W3103324688 @default.
- W2990736268 cites W3106319742 @default.
- W2990736268 cites W3125051887 @default.
- W2990736268 cites W4238943743 @default.
- W2990736268 cites W4245577611 @default.
- W2990736268 cites W4247571494 @default.
- W2990736268 cites W4255230573 @default.
- W2990736268 cites W4294541781 @default.
- W2990736268 cites W4301861531 @default.
- W2990736268 doi "https://doi.org/10.1007/978-3-030-31150-6_19" @default.
- W2990736268 hasPublicationYear "2019" @default.
- W2990736268 type Work @default.
- W2990736268 sameAs 2990736268 @default.
- W2990736268 citedByCount "0" @default.
- W2990736268 crossrefType "book-chapter" @default.
- W2990736268 hasAuthorship W2990736268A5017137031 @default.
- W2990736268 hasConcept C105795698 @default.
- W2990736268 hasConcept C106487976 @default.
- W2990736268 hasConcept C121332964 @default.
- W2990736268 hasConcept C126255220 @default.
- W2990736268 hasConcept C129848803 @default.
- W2990736268 hasConcept C159985019 @default.
- W2990736268 hasConcept C163716315 @default.
- W2990736268 hasConcept C178650346 @default.
- W2990736268 hasConcept C180877172 @default.
- W2990736268 hasConcept C181243257 @default.
- W2990736268 hasConcept C185142706 @default.
- W2990736268 hasConcept C185429906 @default.
- W2990736268 hasConcept C192562407 @default.
- W2990736268 hasConcept C28826006 @default.
- W2990736268 hasConcept C33923547 @default.
- W2990736268 hasConcept C48921125 @default.
- W2990736268 hasConcept C62520636 @default.