Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996154946> ?p ?o ?g. }
- W2996154946 abstract "This study assesses the capability of extended proper orthogonal decomposition (EPOD) and convolutional neural networks (CNNs) to reconstruct large-scale and very-large-scale motions (LSMs and VLSMs respectively) employing wall-shear-stress measurements in wall-bounded turbulent flows. Both techniques are used to reconstruct the instantaneous LSM evolution in the flow field as a combination of proper orthogonal decomposition (POD) modes, employing a limited set of instantaneous wall-shear-stress measurements. Due to the dominance of nonlinear effects, only CNNs provide satisfying results. Being able to account for nonlinearities in the flow, CNNs are shown to perform significantly better than EPOD in terms of both instantaneous flow-field estimation and turbulent-statistics reconstruction. CNNs are able to provide a more effective reconstruction performance employing more POD modes at larger distances from the wall and employing lower wall-measurement resolutions. Furthermore, the capability of tackling nonlinear features of CNNs results in estimation capabilities that are weakly dependent on the distance from the wall." @default.
- W2996154946 created "2019-12-26" @default.
- W2996154946 creator A5017984388 @default.
- W2996154946 creator A5042632509 @default.
- W2996154946 creator A5043881111 @default.
- W2996154946 date "2019-12-01" @default.
- W2996154946 modified "2023-10-18" @default.
- W2996154946 title "Sensing the turbulent large-scale motions with their wall signature" @default.
- W2996154946 cites W1633869374 @default.
- W2996154946 cites W1661478428 @default.
- W2996154946 cites W1967044910 @default.
- W2996154946 cites W1968895792 @default.
- W2996154946 cites W1974991834 @default.
- W2996154946 cites W1975456273 @default.
- W2996154946 cites W1977356602 @default.
- W2996154946 cites W1986129071 @default.
- W2996154946 cites W1994493474 @default.
- W2996154946 cites W2036152539 @default.
- W2996154946 cites W2040870580 @default.
- W2996154946 cites W2045202089 @default.
- W2996154946 cites W2045393972 @default.
- W2996154946 cites W2047368649 @default.
- W2996154946 cites W2047744392 @default.
- W2996154946 cites W2049247955 @default.
- W2996154946 cites W2050195777 @default.
- W2996154946 cites W2053013933 @default.
- W2996154946 cites W2059787978 @default.
- W2996154946 cites W2068470708 @default.
- W2996154946 cites W2076110561 @default.
- W2996154946 cites W2078626246 @default.
- W2996154946 cites W2083454022 @default.
- W2996154946 cites W2091045672 @default.
- W2996154946 cites W2094349332 @default.
- W2996154946 cites W2099662911 @default.
- W2996154946 cites W2100776582 @default.
- W2996154946 cites W2101593751 @default.
- W2996154946 cites W2101926813 @default.
- W2996154946 cites W2127729595 @default.
- W2996154946 cites W2138576079 @default.
- W2996154946 cites W2139247058 @default.
- W2996154946 cites W2144449038 @default.
- W2996154946 cites W2147800946 @default.
- W2996154946 cites W2151450119 @default.
- W2996154946 cites W2158296088 @default.
- W2996154946 cites W2161701131 @default.
- W2996154946 cites W2482092014 @default.
- W2996154946 cites W2521689523 @default.
- W2996154946 cites W2534240011 @default.
- W2996154946 cites W2565123034 @default.
- W2996154946 cites W2565516711 @default.
- W2996154946 cites W2616601527 @default.
- W2996154946 cites W2760986849 @default.
- W2996154946 cites W2767812669 @default.
- W2996154946 cites W2777417212 @default.
- W2996154946 cites W2777693926 @default.
- W2996154946 cites W2790110384 @default.
- W2996154946 cites W2901950140 @default.
- W2996154946 cites W2902480423 @default.
- W2996154946 cites W2905030867 @default.
- W2996154946 cites W2911454271 @default.
- W2996154946 cites W2914633448 @default.
- W2996154946 cites W2919115771 @default.
- W2996154946 cites W2940953274 @default.
- W2996154946 cites W2951279763 @default.
- W2996154946 cites W2983004914 @default.
- W2996154946 cites W3098093095 @default.
- W2996154946 cites W3102140816 @default.
- W2996154946 cites W3102436560 @default.
- W2996154946 cites W3105245152 @default.
- W2996154946 cites W3105648287 @default.
- W2996154946 cites W311419497 @default.
- W2996154946 cites W3206806480 @default.
- W2996154946 doi "https://doi.org/10.1063/1.5128053" @default.
- W2996154946 hasPublicationYear "2019" @default.
- W2996154946 type Work @default.
- W2996154946 sameAs 2996154946 @default.
- W2996154946 citedByCount "30" @default.
- W2996154946 countsByYear W29961549462020 @default.
- W2996154946 countsByYear W29961549462021 @default.
- W2996154946 countsByYear W29961549462022 @default.
- W2996154946 countsByYear W29961549462023 @default.
- W2996154946 crossrefType "journal-article" @default.
- W2996154946 hasAuthorship W2996154946A5017984388 @default.
- W2996154946 hasAuthorship W2996154946A5042632509 @default.
- W2996154946 hasAuthorship W2996154946A5043881111 @default.
- W2996154946 hasBestOaLocation W29961549462 @default.
- W2996154946 hasConcept C11413529 @default.
- W2996154946 hasConcept C121332964 @default.
- W2996154946 hasConcept C154945302 @default.
- W2996154946 hasConcept C158622935 @default.
- W2996154946 hasConcept C196558001 @default.
- W2996154946 hasConcept C2778755073 @default.
- W2996154946 hasConcept C41008148 @default.
- W2996154946 hasConcept C57879066 @default.
- W2996154946 hasConcept C62520636 @default.
- W2996154946 hasConcept C81363708 @default.
- W2996154946 hasConceptScore W2996154946C11413529 @default.
- W2996154946 hasConceptScore W2996154946C121332964 @default.
- W2996154946 hasConceptScore W2996154946C154945302 @default.
- W2996154946 hasConceptScore W2996154946C158622935 @default.