Matches in SemOpenAlex for { <https://semopenalex.org/work/W3018258243> ?p ?o ?g. }
- W3018258243 endingPage "104536" @default.
- W3018258243 startingPage "104536" @default.
- W3018258243 abstract "• new mathematical model for compressible flows around fixed and moving solids of arbitrary shape. • high order finite volume and discontinuous Galerkin schemes for diffuse interface models. • the geometry of the solid objects is merely described by a scalar volume fraction function. • Cartesian grids are sufficient, hence no boundary-fitted mesh generation is needed. • wall-boundary conditions are a consequence of the Riemann invariants and a jump in the volume fraction. In this paper we propose a new diffuse interface model for the numerical simulation of inviscid compressible flows around fixed and moving solid bodies of arbitrary shape. The solids are assumed to be moving rigid bodies, without any elastic properties. The mathematical model is a simplified case of the seven-equation Baer–Nunziato model of compressible multi-phase flows. The resulting governing PDE system is a nonlinear system of hyperbolic conservation laws with non-conservative products. The geometry of the solid bodies is simply specified via a scalar field that represents the volume fraction of the fluid present in each control volume. This allows the discretization of arbitrarily complex geometries on simple uniform or adaptive Cartesian meshes. Inside the solid bodies, the fluid volume fraction is zero, while it is unitary inside the fluid phase. Due to the diffuse interface nature of the model, the volume fraction function can assume any value between zero and one in mixed cells that are occupied by both, fluid and solid. We also prove that at the material interface, i.e. where the volume fraction jumps from unity to zero, the normal component of the fluid velocity assumes the value of the normal component of the solid velocity. This result can be directly derived from the governing equations, either via Riemann invariants or from the generalized Rankine Hugoniot conditions according to the theory of Dal Maso et al. (1995)[89], which justifies the use of a path-conservative approach for treating the non-conservative products. The governing partial differential equations of our new model are solved on simple uniform Cartesian grids via a high order path-conservative ADER discontinuous Galerkin (DG) finite element method with a posteriori sub-cell finite volume (FV) limiter. Since the numerical method is of the shock capturing type, the fluid-solid boundary is never explicitly tracked by the numerical method, neither via interface reconstruction, nor via mesh motion. The effectiveness of the proposed approach is tested on a set of different numerical test problems, including 1D Riemann problems as well as supersonic flows over fixed and moving rigid bodies." @default.
- W3018258243 created "2020-05-01" @default.
- W3018258243 creator A5010204085 @default.
- W3018258243 creator A5051559583 @default.
- W3018258243 creator A5060184913 @default.
- W3018258243 creator A5067696892 @default.
- W3018258243 date "2020-05-01" @default.
- W3018258243 modified "2023-10-03" @default.
- W3018258243 title "A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer–Nunziato model" @default.
- W3018258243 cites W1513760541 @default.
- W3018258243 cites W1543935889 @default.
- W3018258243 cites W1594853292 @default.
- W3018258243 cites W1965709909 @default.
- W3018258243 cites W1966622311 @default.
- W3018258243 cites W1967716557 @default.
- W3018258243 cites W1970170455 @default.
- W3018258243 cites W1971166309 @default.
- W3018258243 cites W1971334156 @default.
- W3018258243 cites W1976429884 @default.
- W3018258243 cites W1976883414 @default.
- W3018258243 cites W1977925899 @default.
- W3018258243 cites W1983372724 @default.
- W3018258243 cites W1983575728 @default.
- W3018258243 cites W1984426476 @default.
- W3018258243 cites W1985715533 @default.
- W3018258243 cites W1989769280 @default.
- W3018258243 cites W1991041626 @default.
- W3018258243 cites W1991113069 @default.
- W3018258243 cites W1993547144 @default.
- W3018258243 cites W1994958147 @default.
- W3018258243 cites W1996055279 @default.
- W3018258243 cites W1997639473 @default.
- W3018258243 cites W1997815093 @default.
- W3018258243 cites W2000332249 @default.
- W3018258243 cites W2001110450 @default.
- W3018258243 cites W2001621596 @default.
- W3018258243 cites W2002340039 @default.
- W3018258243 cites W2004781103 @default.
- W3018258243 cites W2008068453 @default.
- W3018258243 cites W2009112546 @default.
- W3018258243 cites W2009816451 @default.
- W3018258243 cites W2012887032 @default.
- W3018258243 cites W2015558429 @default.
- W3018258243 cites W2018471169 @default.
- W3018258243 cites W2022203399 @default.
- W3018258243 cites W2022659432 @default.
- W3018258243 cites W2022855875 @default.
- W3018258243 cites W2022912150 @default.
- W3018258243 cites W2023248330 @default.
- W3018258243 cites W2024497134 @default.
- W3018258243 cites W2028525550 @default.
- W3018258243 cites W2030119859 @default.
- W3018258243 cites W2032560045 @default.
- W3018258243 cites W2032624437 @default.
- W3018258243 cites W2035626186 @default.
- W3018258243 cites W2036156779 @default.
- W3018258243 cites W2038852701 @default.
- W3018258243 cites W2040760170 @default.
- W3018258243 cites W2041523148 @default.
- W3018258243 cites W2044328164 @default.
- W3018258243 cites W2045618004 @default.
- W3018258243 cites W2045657825 @default.
- W3018258243 cites W2047119298 @default.
- W3018258243 cites W2047391773 @default.
- W3018258243 cites W2054662916 @default.
- W3018258243 cites W2061726168 @default.
- W3018258243 cites W2063215828 @default.
- W3018258243 cites W2063597621 @default.
- W3018258243 cites W2065842177 @default.
- W3018258243 cites W2067265287 @default.
- W3018258243 cites W2068255553 @default.
- W3018258243 cites W2073424199 @default.
- W3018258243 cites W2074061635 @default.
- W3018258243 cites W2075282759 @default.
- W3018258243 cites W2078124515 @default.
- W3018258243 cites W2080585695 @default.
- W3018258243 cites W2081433561 @default.
- W3018258243 cites W2084131634 @default.
- W3018258243 cites W2087759818 @default.
- W3018258243 cites W2088385269 @default.
- W3018258243 cites W2088859111 @default.
- W3018258243 cites W2093587795 @default.
- W3018258243 cites W2093940752 @default.
- W3018258243 cites W2097834406 @default.
- W3018258243 cites W2100182347 @default.
- W3018258243 cites W2104188985 @default.
- W3018258243 cites W2112150873 @default.
- W3018258243 cites W2120044688 @default.
- W3018258243 cites W2125541470 @default.
- W3018258243 cites W2130641747 @default.
- W3018258243 cites W2132846702 @default.
- W3018258243 cites W2140662036 @default.
- W3018258243 cites W2145851836 @default.
- W3018258243 cites W2150662720 @default.
- W3018258243 cites W2151466989 @default.
- W3018258243 cites W2152122438 @default.
- W3018258243 cites W2152735244 @default.
- W3018258243 cites W2154861260 @default.