Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039863359> ?p ?o ?g. }
- W3039863359 endingPage "4802" @default.
- W3039863359 startingPage "4802" @default.
- W3039863359 abstract "Diabetic nephropathy, hypertension, and glomerulonephritis are the most common causes of chronic kidney diseases (CKD). Since CKD of various origins may not become apparent until kidney function is significantly impaired, a differential diagnosis and an appropriate treatment are needed at the very early stages. Conventional biomarkers may not have sufficient separation capabilities, while a full-proteomic approach may be used for these purposes. In the current study, several machine learning algorithms were examined for the differential diagnosis of CKD of three origins. The tested dataset was based on whole proteomic data obtained after the mass spectrometric analysis of plasma and urine samples of 34 CKD patients and the use of label-free quantification approach. The k-nearest-neighbors algorithm showed the possibility of separation of a healthy group from renal patients in general by proteomics data of plasma with high confidence (97.8%). This algorithm has also be proven to be the best of the three tested for distinguishing the groups of patients with diabetic nephropathy and glomerulonephritis according to proteomics data of plasma (96.3% of correct decisions). The group of hypertensive nephropathy could not be reliably separated according to plasma data, whereas analysis of entire proteomics data of urine did not allow differentiating the three diseases. Nevertheless, the group of hypertensive nephropathy was reliably separated from all other renal patients using the k-nearest-neighbors classifier “one against all” with 100% of accuracy by urine proteome data. The tested algorithms show good abilities to differentiate the various groups across proteomic data sets, which may help to avoid invasive intervention for the verification of the glomerulonephritis subtypes, as well as to differentiate hypertensive and diabetic nephropathy in the early stages based not on individual biomarkers, but on the whole proteomic composition of urine and blood." @default.
- W3039863359 created "2020-07-10" @default.
- W3039863359 creator A5015611000 @default.
- W3039863359 creator A5033562284 @default.
- W3039863359 creator A5036258216 @default.
- W3039863359 creator A5045719016 @default.
- W3039863359 creator A5062256394 @default.
- W3039863359 creator A5067145965 @default.
- W3039863359 creator A5071876358 @default.
- W3039863359 creator A5076465286 @default.
- W3039863359 creator A5079646648 @default.
- W3039863359 creator A5087699888 @default.
- W3039863359 creator A5088653864 @default.
- W3039863359 date "2020-07-07" @default.
- W3039863359 modified "2023-10-10" @default.
- W3039863359 title "Proteomics-Based Machine Learning Approach as an Alternative to Conventional Biomarkers for Differential Diagnosis of Chronic Kidney Diseases" @default.
- W3039863359 cites W1777994377 @default.
- W3039863359 cites W1981410669 @default.
- W3039863359 cites W1987083564 @default.
- W3039863359 cites W2000654719 @default.
- W3039863359 cites W2026633060 @default.
- W3039863359 cites W2034820447 @default.
- W3039863359 cites W2040558144 @default.
- W3039863359 cites W2043575472 @default.
- W3039863359 cites W2059641757 @default.
- W3039863359 cites W2071659396 @default.
- W3039863359 cites W2077457092 @default.
- W3039863359 cites W2080752012 @default.
- W3039863359 cites W2083932060 @default.
- W3039863359 cites W2094977970 @default.
- W3039863359 cites W2104082850 @default.
- W3039863359 cites W2104787607 @default.
- W3039863359 cites W2107893794 @default.
- W3039863359 cites W2117925356 @default.
- W3039863359 cites W2131474777 @default.
- W3039863359 cites W2140351394 @default.
- W3039863359 cites W2735466792 @default.
- W3039863359 cites W2742811155 @default.
- W3039863359 cites W2885688423 @default.
- W3039863359 cites W2886281300 @default.
- W3039863359 cites W2888518764 @default.
- W3039863359 cites W2891650217 @default.
- W3039863359 cites W2970997773 @default.
- W3039863359 doi "https://doi.org/10.3390/ijms21134802" @default.
- W3039863359 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7369970" @default.
- W3039863359 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32645927" @default.
- W3039863359 hasPublicationYear "2020" @default.
- W3039863359 type Work @default.
- W3039863359 sameAs 3039863359 @default.
- W3039863359 citedByCount "15" @default.
- W3039863359 countsByYear W30398633592020 @default.
- W3039863359 countsByYear W30398633592021 @default.
- W3039863359 countsByYear W30398633592022 @default.
- W3039863359 countsByYear W30398633592023 @default.
- W3039863359 crossrefType "journal-article" @default.
- W3039863359 hasAuthorship W3039863359A5015611000 @default.
- W3039863359 hasAuthorship W3039863359A5033562284 @default.
- W3039863359 hasAuthorship W3039863359A5036258216 @default.
- W3039863359 hasAuthorship W3039863359A5045719016 @default.
- W3039863359 hasAuthorship W3039863359A5062256394 @default.
- W3039863359 hasAuthorship W3039863359A5067145965 @default.
- W3039863359 hasAuthorship W3039863359A5071876358 @default.
- W3039863359 hasAuthorship W3039863359A5076465286 @default.
- W3039863359 hasAuthorship W3039863359A5079646648 @default.
- W3039863359 hasAuthorship W3039863359A5087699888 @default.
- W3039863359 hasAuthorship W3039863359A5088653864 @default.
- W3039863359 hasBestOaLocation W30398633591 @default.
- W3039863359 hasConcept C104317684 @default.
- W3039863359 hasConcept C104397665 @default.
- W3039863359 hasConcept C126322002 @default.
- W3039863359 hasConcept C134018914 @default.
- W3039863359 hasConcept C142724271 @default.
- W3039863359 hasConcept C159641895 @default.
- W3039863359 hasConcept C2778653478 @default.
- W3039863359 hasConcept C2779922275 @default.
- W3039863359 hasConcept C2780026642 @default.
- W3039863359 hasConcept C2780091579 @default.
- W3039863359 hasConcept C2780368995 @default.
- W3039863359 hasConcept C2780801072 @default.
- W3039863359 hasConcept C2781184683 @default.
- W3039863359 hasConcept C46111723 @default.
- W3039863359 hasConcept C55493867 @default.
- W3039863359 hasConcept C555293320 @default.
- W3039863359 hasConcept C60644358 @default.
- W3039863359 hasConcept C71924100 @default.
- W3039863359 hasConcept C86803240 @default.
- W3039863359 hasConceptScore W3039863359C104317684 @default.
- W3039863359 hasConceptScore W3039863359C104397665 @default.
- W3039863359 hasConceptScore W3039863359C126322002 @default.
- W3039863359 hasConceptScore W3039863359C134018914 @default.
- W3039863359 hasConceptScore W3039863359C142724271 @default.
- W3039863359 hasConceptScore W3039863359C159641895 @default.
- W3039863359 hasConceptScore W3039863359C2778653478 @default.
- W3039863359 hasConceptScore W3039863359C2779922275 @default.
- W3039863359 hasConceptScore W3039863359C2780026642 @default.
- W3039863359 hasConceptScore W3039863359C2780091579 @default.
- W3039863359 hasConceptScore W3039863359C2780368995 @default.
- W3039863359 hasConceptScore W3039863359C2780801072 @default.