Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043614448> ?p ?o ?g. }
- W3043614448 endingPage "103288" @default.
- W3043614448 startingPage "103288" @default.
- W3043614448 abstract "Abstract Sinuous collapse chains and skylights in lunar and Martian volcanic regions have often been interpreted as collapsed lava tubes (also known as pyroducts). This hypothesis has fostered a forty years debate among planetary geologists trying to define if analogue volcano-speleogenetic processes acting on Earth could have created similar subsurface linear voids in extra-terrestrial volcanoes. On Earth lava tubes are well known thanks to speleological exploration and mapping in several shield volcanoes, with examples showing different genetic processes (inflation and overcrusting) and morphometric characters. On the Moon subsurface cavities have been inferred from several skylights in Maria smooth plains and corroborated using gravimetry and radar sounder, while on Mars several deep skylights have been identified on lava flows with striking similarities with terrestrial cases. Nonetheless, the literature on this topic is scattered and often presents inaccuracies in terminology and interpretation. A clear understanding of the potential morphologies and dimensions of Martian and lunar lava tubes remains elusive. Although it is still impossible to gather direct information on the interior of Martian and lunar lava tube candidates, scientists have the possibility to investigate their surface expression through the analysis of collapses and skylight morphology, morphometry and their arrangement, and compare these findings with terrestrial analogues. In this review the state of the art on terrestrial lava tubes is outlined in order to perform a morphological and morphometric comparison with lava tube candidate collapse chains on Mars and the Moon. By comparing literature and speleological data from terrestrial analogues and measuring lunar and Martian collapse chains on satellite images and digital terrain models (DTMs), this review sheds light on tube size, depth from surface, eccentricity and several other morphometric parameters among the three different planetary bodies. The dataset here presented indicates that Martian and lunar tubes are 1 to 3 orders of magnitude more voluminous than on Earth, and suggests that the same processes of inflation and overcrusting were active on Mars, while deep inflation and thermal entrenchment was the predominant mechanism of emplacement on the Moon. Even with these outstanding dimensions (with total volumes exceeding 1 billion of m3), lunar tubes remain well within the roof stability threshold. The analysis shows that aside of collapses triggered by impacts/tectonics, most of the lunar tubes could be intact, making the Moon an extraordinary target for subsurface exploration and potential settlement in the wide protected and stable environments of lava tubes." @default.
- W3043614448 created "2020-07-23" @default.
- W3043614448 creator A5021873097 @default.
- W3043614448 creator A5030386707 @default.
- W3043614448 creator A5043884519 @default.
- W3043614448 creator A5051877683 @default.
- W3043614448 creator A5069271932 @default.
- W3043614448 creator A5073930103 @default.
- W3043614448 date "2020-10-01" @default.
- W3043614448 modified "2023-10-17" @default.
- W3043614448 title "Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology" @default.
- W3043614448 cites W1100968874 @default.
- W3043614448 cites W1506071397 @default.
- W3043614448 cites W1543351995 @default.
- W3043614448 cites W1932544194 @default.
- W3043614448 cites W1964337498 @default.
- W3043614448 cites W1964739954 @default.
- W3043614448 cites W1969740316 @default.
- W3043614448 cites W1977234834 @default.
- W3043614448 cites W1978000560 @default.
- W3043614448 cites W1982205186 @default.
- W3043614448 cites W1984369085 @default.
- W3043614448 cites W1992112967 @default.
- W3043614448 cites W1993782770 @default.
- W3043614448 cites W1994847293 @default.
- W3043614448 cites W1998287398 @default.
- W3043614448 cites W2000769669 @default.
- W3043614448 cites W2005131721 @default.
- W3043614448 cites W2006203315 @default.
- W3043614448 cites W2010098186 @default.
- W3043614448 cites W2016576289 @default.
- W3043614448 cites W2018029878 @default.
- W3043614448 cites W2034930412 @default.
- W3043614448 cites W2037222228 @default.
- W3043614448 cites W2041998114 @default.
- W3043614448 cites W2042550617 @default.
- W3043614448 cites W2051184331 @default.
- W3043614448 cites W2054441036 @default.
- W3043614448 cites W2058930929 @default.
- W3043614448 cites W2061681989 @default.
- W3043614448 cites W2062638249 @default.
- W3043614448 cites W2066233978 @default.
- W3043614448 cites W2067121438 @default.
- W3043614448 cites W2076708908 @default.
- W3043614448 cites W2082648547 @default.
- W3043614448 cites W2087181843 @default.
- W3043614448 cites W2088421012 @default.
- W3043614448 cites W2092460246 @default.
- W3043614448 cites W2092524478 @default.
- W3043614448 cites W2092845803 @default.
- W3043614448 cites W2102116438 @default.
- W3043614448 cites W2116890009 @default.
- W3043614448 cites W2117586409 @default.
- W3043614448 cites W2149938984 @default.
- W3043614448 cites W2153976186 @default.
- W3043614448 cites W2162967929 @default.
- W3043614448 cites W2165535138 @default.
- W3043614448 cites W2174718931 @default.
- W3043614448 cites W2308516304 @default.
- W3043614448 cites W2317622691 @default.
- W3043614448 cites W2512482136 @default.
- W3043614448 cites W2527794920 @default.
- W3043614448 cites W2562324590 @default.
- W3043614448 cites W2596261483 @default.
- W3043614448 cites W2745210773 @default.
- W3043614448 cites W2766698650 @default.
- W3043614448 cites W2774105820 @default.
- W3043614448 cites W2790079735 @default.
- W3043614448 cites W2791628640 @default.
- W3043614448 cites W2905160933 @default.
- W3043614448 cites W2951506122 @default.
- W3043614448 cites W2968214327 @default.
- W3043614448 cites W2979288020 @default.
- W3043614448 doi "https://doi.org/10.1016/j.earscirev.2020.103288" @default.
- W3043614448 hasPublicationYear "2020" @default.
- W3043614448 type Work @default.
- W3043614448 sameAs 3043614448 @default.
- W3043614448 citedByCount "66" @default.
- W3043614448 countsByYear W30436144482020 @default.
- W3043614448 countsByYear W30436144482021 @default.
- W3043614448 countsByYear W30436144482022 @default.
- W3043614448 countsByYear W30436144482023 @default.
- W3043614448 crossrefType "journal-article" @default.
- W3043614448 hasAuthorship W3043614448A5021873097 @default.
- W3043614448 hasAuthorship W3043614448A5030386707 @default.
- W3043614448 hasAuthorship W3043614448A5043884519 @default.
- W3043614448 hasAuthorship W3043614448A5051877683 @default.
- W3043614448 hasAuthorship W3043614448A5069271932 @default.
- W3043614448 hasAuthorship W3043614448A5073930103 @default.
- W3043614448 hasConcept C113754120 @default.
- W3043614448 hasConcept C120806208 @default.
- W3043614448 hasConcept C121332964 @default.
- W3043614448 hasConcept C127313418 @default.
- W3043614448 hasConcept C1276947 @default.
- W3043614448 hasConcept C151730666 @default.
- W3043614448 hasConcept C152551177 @default.
- W3043614448 hasConcept C17409809 @default.
- W3043614448 hasConcept C26148502 @default.