Matches in SemOpenAlex for { <https://semopenalex.org/work/W3058742904> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3058742904 abstract "Rough set is a commonly used feature selection tool. Fuzzy rough sets further expand the adaptability of the model. Unfortunately, noise can have a large effect on the calculation results of fuzzy rough sets. Such sensitivity severely limits the practical applications of rough fuzzy rough sets. In order to solve the above problems, some powerful robust models had been proposed in recent years, but most of these methods identify the noisy samples in a certain way and then ignore them, which will lead to the loss of information. Therefore, in this work, a robust fuzzy rough set model based on multi-kernel and fuzzy decision was proposed. This method introduces the concept of fuzzy decision to compute the membership degree of each sample for each decision attribute, which can initially eliminates the impact of manual misclassification. Secondly, the multi-kernel operators were used to measure the similarity between samples, so as to improve the ability of the model to deal with nonlinear classification problems. Finally, the k-nearest neighbor idea was used to further weaken the error caused by the noisy samples. Further, a feature selection strategy based on greedy algorithm is proposed. Ten data sets were selected from UCI to compare the proposed algorithm with some of the state-of-the art approaches. The comparison results of this experiment prove that the proposed feature selection algorithm is more effective in most cases when selecting some specific multi-kernel operators." @default.
- W3058742904 created "2020-08-24" @default.
- W3058742904 creator A5025420693 @default.
- W3058742904 creator A5076873121 @default.
- W3058742904 date "2019-11-01" @default.
- W3058742904 modified "2023-10-04" @default.
- W3058742904 title "A Robust Fuzzy Rough Set Method Based on Multi-Kernel and Fuzzy Decision for Feature Selection" @default.
- W3058742904 cites W1994550352 @default.
- W3058742904 cites W2002680690 @default.
- W3058742904 cites W2011394805 @default.
- W3058742904 cites W2027654459 @default.
- W3058742904 cites W2050159152 @default.
- W3058742904 cites W2050401513 @default.
- W3058742904 cites W2076837108 @default.
- W3058742904 cites W2111011053 @default.
- W3058742904 cites W2114296159 @default.
- W3058742904 cites W2122471363 @default.
- W3058742904 cites W2124491466 @default.
- W3058742904 cites W2416404380 @default.
- W3058742904 cites W2565905535 @default.
- W3058742904 cites W2899356345 @default.
- W3058742904 cites W2946848072 @default.
- W3058742904 doi "https://doi.org/10.1109/iske47853.2019.9170449" @default.
- W3058742904 hasPublicationYear "2019" @default.
- W3058742904 type Work @default.
- W3058742904 sameAs 3058742904 @default.
- W3058742904 citedByCount "0" @default.
- W3058742904 crossrefType "proceedings-article" @default.
- W3058742904 hasAuthorship W3058742904A5025420693 @default.
- W3058742904 hasAuthorship W3058742904A5076873121 @default.
- W3058742904 hasConcept C111012933 @default.
- W3058742904 hasConcept C114614502 @default.
- W3058742904 hasConcept C119857082 @default.
- W3058742904 hasConcept C124101348 @default.
- W3058742904 hasConcept C148483581 @default.
- W3058742904 hasConcept C153180895 @default.
- W3058742904 hasConcept C154945302 @default.
- W3058742904 hasConcept C33923547 @default.
- W3058742904 hasConcept C41008148 @default.
- W3058742904 hasConcept C42011625 @default.
- W3058742904 hasConcept C58166 @default.
- W3058742904 hasConcept C74193536 @default.
- W3058742904 hasConceptScore W3058742904C111012933 @default.
- W3058742904 hasConceptScore W3058742904C114614502 @default.
- W3058742904 hasConceptScore W3058742904C119857082 @default.
- W3058742904 hasConceptScore W3058742904C124101348 @default.
- W3058742904 hasConceptScore W3058742904C148483581 @default.
- W3058742904 hasConceptScore W3058742904C153180895 @default.
- W3058742904 hasConceptScore W3058742904C154945302 @default.
- W3058742904 hasConceptScore W3058742904C33923547 @default.
- W3058742904 hasConceptScore W3058742904C41008148 @default.
- W3058742904 hasConceptScore W3058742904C42011625 @default.
- W3058742904 hasConceptScore W3058742904C58166 @default.
- W3058742904 hasConceptScore W3058742904C74193536 @default.
- W3058742904 hasLocation W30587429041 @default.
- W3058742904 hasOpenAccess W3058742904 @default.
- W3058742904 hasPrimaryLocation W30587429041 @default.
- W3058742904 hasRelatedWork W1486213179 @default.
- W3058742904 hasRelatedWork W2026122471 @default.
- W3058742904 hasRelatedWork W2086187770 @default.
- W3058742904 hasRelatedWork W2095641424 @default.
- W3058742904 hasRelatedWork W2163370485 @default.
- W3058742904 hasRelatedWork W2292553612 @default.
- W3058742904 hasRelatedWork W2342915065 @default.
- W3058742904 hasRelatedWork W2511098035 @default.
- W3058742904 hasRelatedWork W2554002662 @default.
- W3058742904 hasRelatedWork W2732347010 @default.
- W3058742904 hasRelatedWork W2769903033 @default.
- W3058742904 hasRelatedWork W2899356345 @default.
- W3058742904 hasRelatedWork W2913644558 @default.
- W3058742904 hasRelatedWork W2966120476 @default.
- W3058742904 hasRelatedWork W2982958322 @default.
- W3058742904 hasRelatedWork W2994637745 @default.
- W3058742904 hasRelatedWork W2994713090 @default.
- W3058742904 hasRelatedWork W3182985241 @default.
- W3058742904 hasRelatedWork W3189365424 @default.
- W3058742904 hasRelatedWork W79531101 @default.
- W3058742904 isParatext "false" @default.
- W3058742904 isRetracted "false" @default.
- W3058742904 magId "3058742904" @default.
- W3058742904 workType "article" @default.